小说搜索     点击排行榜   最新入库
首页 » 英文短篇小说 » Meteorology » Book I
选择底色: 选择字号:【大】【中】【小】
Book I
关注小说网官方公众号(noveltingroom),原版名著免费领。
1

WE have already discussed the first causes of nature, and all natural motion, also the stars ordered in the motion of the heavens, and the physical element-enumerating and specifying1 them and showing how they change into one another-and becoming and perishing in general. There remains2 for consideration a part of this inquiry3 which all our predecessors4 called meteorology. It is concerned with events that are natural, though their order is less perfect than that of the first of the elements of bodies. They take place in the region nearest to the motion of the stars. Such are the milky5 way, and comets, and the movements of meteors. It studies also all the affections we may call common to air and water, and the kinds and parts of the earth and the affections of its parts. These throw light on the causes of winds and earthquakes and all the consequences the motions of these kinds and parts involve. Of these things some puzzle us, while others admit of explanation in some degree. Further, the inquiry is concerned with the falling of thunderbolts and with whirlwinds and fire-winds, and further, the recurrent affections produced in these same bodies by concretion. When the inquiry into these matters is concluded let us consider what account we can give, in accordance with the method we have followed, of animals and plants, both generally and in detail. When that has been done we may say that the whole of our original undertaking6 will have been carried out.
After this introduction let us begin by discussing our immediate8 subject.
2

We have already laid down that there is one physical element which makes up the system of the bodies that move in a circle, and besides this four bodies owing their existence to the four principles, the motion of these latter bodies being of two kinds: either from the centre or to the centre. These four bodies are fire, air, water, earth. Fire occupies the highest place among them all, earth the lowest, and two elements correspond to these in their relation to one another, air being nearest to fire, water to earth. The whole world surrounding the earth, then, the affections of which are our subject, is made up of these bodies. This world necessarily has a certain continuity with the upper motions: consequently all its power and order is derived9 from them. (For the originating principle of all motion is the first cause. Besides, that clement11 is eternal and its motion has no limit in space, but is always complete; whereas all these other bodies have separate regions which limit one another.) So we must treat fire and earth and the elements like them as the material causes of the events in this world (meaning by material what is subject and is affected12), but must assign causality in the sense of the originating principle of motion to the influence of the eternally moving bodies.
3

Let us first recall our original principles and the distinctions already drawn13 and then explain the ‘milky way’ and comets and the other phenomena14 akin7 to these.
Fire, air, water, earth, we assert, originate from one another, and each of them exists potentially in each, as all things do that can be resolved into a common and ultimate substrate.
The first difficulty is raised by what is called the air. What are we to take its nature to be in the world surrounding the earth? And what is its position relatively15 to the other physical elements. (For there is no question as to the relation of the bulk of the earth to the size of the bodies which exist around it, since astronomical16 demonstrations17 have by this time proved to us that it is actually far smaller than some individual stars. As for the water, it is not observed to exist collectively and separately, nor can it do so apart from that volume of it which has its seat about the earth: the sea, that is, and rivers, which we can see, and any subterranean18 water that may be hidden from our observation.) The question is really about that which lies between the earth and the nearest stars. Are we to consider it to be one kind of body or more than one? And if more than one, how many are there and what are the bounds of their regions?
We have already described and characterized the first element, and explained that the whole world of the upper motions is full of that body.
This is an opinion we are not alone in holding: it appears to be an old assumption and one which men have held in the past, for the word ether has long been used to denote that element. Anaxagoras, it is true, seems to me to think that the word means the same as fire. For he thought that the upper regions were full of fire, and that men referred to those regions when they spoke19 of ether. In the latter point he was right, for men seem to have assumed that a body that was eternally in motion was also divine in nature; and, as such a body was different from any of the terrestrial elements, they determined20 to call it ‘ether’.
For the um opinions appear in cycles among men not once nor twice, but infinitely21 often.
Now there are some who maintain that not only the bodies in motion but that which contains them is pure fire, and the interval22 between the earth and the stars air: but if they had considered what is now satisfactorily established by mathematics, they might have given up this puerile23 opinion. For it is altogether childish to suppose that the moving bodies are all of them of a small size, because they so to us, looking at them from the earth.
This a matter which we have already discussed in our treatment of the upper region, but we may return to the point now.
If the intervals24 were full of fire and the bodies consisted of fire every one of the other elements would long ago have vanished.
However, they cannot simply be said to be full of air either; for even if there were two elements to fill the space between the earth and the heavens, the air would far exceed the quantitu required to maintain its proper proportion to the other elements. For the bulk of the earth (which includes the whole volume of water) is infinitesimal in comparison with the whole world that surrounds it. Now we find that the excess in volume is not proportionately great where water dissolves into air or air into fire. Whereas the proportion between any given small quantity of water and the air that is generated from it ought to hold good between the total amount of air and the total amount of water. Nor does it make any difference if any one denies that the elements originate from one another, but asserts that they are equal in power. For on this view it is certain amounts of each that are equal in power, just as would be the case if they actually originated from one another.
So it is clear that neither air nor fire alone fills the intermediate space.
It remains to explain, after a preliminary discussion of difficulties, the relation of the two elements air and fire to the position of the first element, and the reason why the stars in the upper region impart heat to the earth and its neighbourhood. Let us first treat of the air, as we proposed, and then go on to these questions.
Since water is generated from air, and air from water, why are clouds not formed in the upper air? They ought to form there the more, the further from the earth and the colder that region is. For it is neither appreciably25 near to the heat of the stars, nor to the rays relected from the earth. It is these that dissolve any formation by their heat and so prevent clouds from forming near the earth. For clouds gather at the point where the reflected rays disperse26 in the infinity27 of space and are lost. To explain this we must suppose either that it is not all air which water is generated, or, if it is produced from all air alike, that what immediately surrounds the earth is not mere28 air, but a sort of vapour, and that its vaporous nature is the reason why it condenses back to water again. But if the whole of that vast region is vapour, the amount of air and of water will be disproportionately great. For the spaces left by the heavenly bodies must be filled by some element. This cannot be fire, for then all the rest would have been dried up. Consequently, what fills it must be air and the water that surrounds the whole earth-vapour being water dissolved.
After this exposition of the difficulties involved, let us go on to lay down the truth, with a view at once to what follows and to what has already been said. The upper region as far as the moon we affirm to consist of a body distinct both from fire and from air, but varying degree of purity and in kind, especially towards its limit on the side of the air, and of the world surrounding the earth. Now the circular motion of the first element and of the bodies it contains dissolves, and inflames31 by its motion, whatever part of the lower world is nearest to it, and so generates heat. From another point of view we may look at the motion as follows. The body that lies below the circular motion of the heavens is, in a sort, matter, and is potentially hot, cold, dry, moist, and possessed33 of whatever other qualities are derived from these. But it actually acquires or retains one of these in virtue34 of motion or rest, the cause and principle of which has already been explained. So at the centre and round it we get earth and water, the heaviest and coldest elements, by themselves; round them and contiguous with them, air and what we commonly call fire. It is not really fire, for fire is an excess of heat and a sort of ebullition; but in reality, of what we call air, the part surrounding the earth is moist and warm, because it contains both vapour and a dry exhalation from the earth. But the next part, above that, is warm and dry. For vapour is naturally moist and cold, but the exhalation warm and dry; and vapour is potentially like water, the exhalation potentially like fire. So we must take the reason why clouds are not formed in the upper region to be this: that it is filled not with mere air but rather with a sort of fire.
However, it may well be that the formation of clouds in that upper region is also prevented by the circular motion. For the air round the earth is necessarily all of it in motion, except that which is cut off inside the circumference35 which makes the earth a complete sphere. In the case of winds it is actually observable that they originate in marshy36 districts of the earth; and they do not seem to blow above the level of the highest mountains. It is the revolution of the heaven which carries the air with it and causes its circular motion, fire being continuous with the upper element and air with fire. Thus its motion is a second reason why that air is not condensed into water.
But whenever a particle of air grows heavy, the warmth in it is squeezed out into the upper region and it sinks, and other particles in turn are carried up together with the fiery37 exhalation. Thus the one region is always full of air and the other of fire, and each of them is perpetually in a state of change.
So much to explain why clouds are not formed and why the air is not condensed into water, and what account must be given of the space between the stars and the earth, and what is the body that fills it.
As for the heat derived from the sun, the right place for a special and scientific account of it is in the treatise38 about sense, since heat is an affection of sense, but we may now explain how it can be produced by the heavenly bodies which are not themselves hot.
We see that motion is able to dissolve and inflame32 the air; indeed, moving bodies are often actually found to melt. Now the sun’s motion alone is sufficient to account for the origin of terrestrial warmth and heat. For a motion that is to have this effect must be rapid and near, and that of the stars is rapid but distant, while that of the moon is near but slow, whereas the sun’s motion combines both conditions in a sufficient degree. That most heat should be generated where the sun is present is easy to understand if we consider the analogy of terrestrial phenomena, for here, too, it is the air that is nearest to a thing in rapid motion which is heated most. This is just what we should expect, as it is the nearest air that is most dissolved by the motion of a solid body.
This then is one reason why heat reaches our world. Another is that the fire surrounding the air is often scattered39 by the motion of the heavens and driven downwards40 in spite of itself.
Shooting-stars further suffix41 to prove that the celestial42 sphere is not hot or fiery: for they do not occur in that upper region but below: yet the more and the faster a thing moves, the more apt it is to take fire. Besides, the sun, which most of all the stars is considered to be hot, is really white and not fiery in colour.
4

Having determined these principles let us explain the cause of the appearance in the sky of burning flames and of shooting-stars, and of ‘torches’, and ‘goats’, as some people call them. All these phenomena are one and the same thing, and are due to the same cause, the difference between them being one of degree.
The explanation of these and many other phenomena is this. When the sun warms the earth the evaporation43 which takes place is necessarily of two kinds, not of one only as some think. One kind is rather of the nature of vapour, the other of the nature of a windy exhalation. That which rises from the moisture contained in the earth and on its surface is vapour, while that rising from the earth itself, which is dry, is like smoke. Of these the windy exhalation, being warm, rises above the moister vapour, which is heavy and sinks below the other. Hence the world surrounding the earth is ordered as follows. First below the circular motion comes the warm and dry element, which we call fire, for there is no word fully44 adequate to every state of the fumid evaporation: but we must use this terminology45 since this element is the most inflammable of all bodies. Below this comes air. We must think of what we just called fire as being spread round the terrestrial sphere on the outside like a kind of fuel, so that a little motion often makes it burst into flame just as smoke does: for flame is the ebullition of a dry exhalation. So whenever the circular motion stirs this stuff up in any way, it catches fire at the point at which it is most inflammable. The result differs according to the disposition46 and quantity of the combustible47 material. If this is broad and long, we often see a flame burning as in a field of stubble: if it burns lengthwise only, we see what are called ‘torches’ and ‘goats’ and shooting-stars. Now when the inflammable material is longer than it is broad sometimes it seems to throw off sparks as it burns. (This happens because matter catches fire at the sides in small portions but continuously with the main body.) Then it is called a ‘goat’. When this does not happen it is a ‘torch’. But if the whole length of the exhalation is scattered in small parts and in many directions and in breadth and depth alike, we get what are called shooting-stars.
The cause of these shooting-stars is sometimes the motion which ignites the exhalation. At other times the air is condensed by cold and squeezes out and ejects the hot element; making their motion look more like that of a thing thrown than like a running fire. For the question might be raised whether the ‘shooting’ of a ‘star’ is the same thing as when you put an exhalation below a lamp and it lights the lower lamp from the flame above. For here too the flame passes wonderfully quickly and looks like a thing thrown, and not as if one thing after another caught fire. Or is a ‘star’ when it ‘shoots’ a single body that is thrown? Apparently48 both cases occur: sometimes it is like the flame from the lamp and sometimes bodies are projected by being squeezed out (like fruit stones from one’s fingers) and so are seen to fall into the sea and on the dry land, both by night and by day when the sky is clear. They are thrown downwards because the condensation49 which propels them inclines downwards. Thunderbolts fall downwards for the same reason: their origin is never combustion50 but ejection under pressure, since naturally all heat tends upwards51.
When the phenomenon is formed in the upper region it is due to the combustion of the exhalation. When it takes place at a lower level it is due to the ejection of the exhalation by the condensing and cooling of the moister evaporation: for this latter as it condenses and inclines downward contracts, and thrusts out the hot element and causes it to be thrown downwards. The motion is upwards or downwards or sideways according to the way in which the evaporation lies, and its disposition in respect of breadth and depth. In most cases the direction is sideways because two motions are involved, a compulsory52 motion downwards and a natural motion upwards, and under these circumstances an object always moves obliquely53. Hence the motion of ‘shooting-stars’ is generally oblique54.
So the material cause of all these phenomena is the exhalation, the efficient cause sometimes the upper motion, sometimes the contraction55 and condensation of the air. Further, all these things happen below the moon. This is shown by their apparent speed, which is equal to that of things thrown by us; for it is because they are close to us, that these latter seem far to exceed in speed the stars, the sun, and the moon.
5

Sometimes on a fine night we see a variety of appearances that form in the sky: ‘chasms56’ for instance and ‘trenches57’ and blood-red colours. These, too, have the same cause. For we have seen that the upper air condenses into an inflammable condition and that the combustion sometimes takes on the appearance of a burning flame, sometimes that of moving torches and stars. So it is not surprising that this same air when condensing should assume a variety of colours. For a weak light shining through a dense30 air, and the air when it acts as a mirror, will cause all kinds of colours to appear, but especially crimson58 and purple. For these colours generally appear when fire-colour and white are combined by superposition. Thus on a hot day, or through a smoky, medium, the stars when they rise and set look crimson. The light will also create colours by reflection when the mirror is such as to reflect colour only and not shape.
These appearances do not persist long, because the condensation of the air is transient.
‘Chasms’ get their appearance of depth from light breaking out of a dark blue or black mass of air. When the process of condensation goes further in such a case we often find ‘torches’ ejected. When the ‘chasm’ contracts it presents the appearance of a ‘trench’.
In general, white in contrast with black creates a variety of colours; like flame, for instance, through a medium of smoke. But by day the sun obscures them, and, with the exception of crimson, the colours are not seen at night because they are dark.
These then must be taken to be the causes of ‘shooting-stars’ and the phenomena of combustion and also of the other transient appearances of this kind.
6

Let us go on to explain the nature of comets and the ‘milky way’, after a preliminary discussion of the views of others.
Anaxagoras and Democritus declare that comets are a conjunction of the planets approaching one another and so appearing to touch one another.
Some of the Italians called Pythagoreans say that the comet is one of the planets, but that it appears at great intervals of time and only rises a little above the horizon. This is the case with Mercury too; because it only rises a little above the horizon it often fails to be seen and consequently appears at great intervals of time.
A view like theirs was also expressed by Hippocrates of Chios and his pupil Aeschylus. Only they say that the tail does not belong to the comet iself, but is occasionally assumed by it on its course in certain situations, when our sight is reflected to the sun from the moisture attracted by the comet. It appears at greater intervals than the other stars because it is slowest to get clear of the sun and has been left behind by the sun to the extent of the whole of its circle before it reappears at the same point. It gets clear of the sun both towards the north and towards the south. In the space between the tropics it does not draw water to itself because that region is dried up by the sun on its course. When it moves towards the south it has no lack of the necessary moisture, but because the segment of its circle which is above the horizon is small, and that below it many times as large, it is impossible for the sun to be reflected to our sight, either when it approaches the southern tropic, or at the summer solstice. Hence in these regions it does not develop a tail at all. But when it is visible in the north it assumes a tail because the arc above the horizon is large and that below it small. For under these circumstances there is nothing to prevent our vision from being reflected to the sun.
These views involve impossibilities, some of which are common to all of them, while others are peculiar59 to some only.
This is the case, first, with those who say that the comet is one of the planets. For all the planets appear in the circle of the zodiac, whereas many comets have been seen outside that circle. Again more comets than one have often appeared simultaneously60. Besides, if their tail is due to reflection, as Aeschylus and Hippocrates say, this planet ought sometimes to be visible without a tail since, as they it does not possess a tail in every place in which it appears. But, as a matter of fact, no planet has been observed besides the five. And all of them are often visible above the horizon together at the same time. Further, comets are often found to appear, as well when all the planets are visible as when some are not, but are obscured by the neighbourhood of the sun. Moreover the statement that a comet only appears in the north, with the sun at the summer solstice, is not true either. The great comet which appeared at the time of the earthquake in Achaea and the tidal wave rose due west; and many have been known to appear in the south. Again in the archonship of Euclees, son of Molon, at Athens there appeared a comet in the north in the month Gamelion, the sun being about the winter solstice. Yet they themselves admit that reflection over so great a space is an impossibility.
An objection that tells equally against those who hold this theory and those who say that comets are a coalescence61 of the planets is, first, the fact that some of the fixed63 stars too get a tail. For this we must not only accept the authority of the Egyptians who assert it, but we have ourselves observed the fact. For a star in the thigh64 of the Dog had a tail, though a faint one. If you fixed your sight on it its light was dim, but if you just glanced at it, it appeared brighter. Besides, all the comets that have been seen in our day have vanished without setting, gradually fading away above the horizon; and they have not left behind them either one or more stars. For instance the great comet we mentioned before appeared to the west in winter in frosty weather when the sky was clear, in the archonship of Asteius. On the first day it set before the sun and was then not seen. On the next day it was seen, being ever so little behind the sun and immediately setting. But its light extended over a third part of the sky like a leap, so that people called it a ‘path’. This comet receded65 as far as Orion’s belt and there dissolved. Democritus however, insists upon the truth of his view and affirms that certain stars have been seen when comets dissolve. But on his theory this ought not to occur occasionally but always. Besides, the Egyptians affirm that conjunctions of the planets with one another, and with the fixed stars, take place, and we have ourselves observed Jupiter coinciding with one of the stars in the Twins and hiding it, and yet no comet was formed. Further, we can also give a rational proof of our point. It is true that some stars seem to be bigger than others, yet each one by itself looks indivisible. Consequently, just as, if they really had been indivisible, their conjunction could not have created any greater magnitude, so now that they are not in fact indivisible but look as if they were, their conjunction will not make them look any bigger.
Enough has been said, without further argument, to show that the causes brought forward to explain comets are false.
7

We consider a satisfactory explanation of phenomena inaccessible66 to observation to have been given when our account of them is free from impossibilities. The observations before us suggest the following account of the phenomena we are now considering. We know that the dry and warm exhalation is the outermost67 part of the terrestrial world which falls below the circular motion. It, and a great part of the air that is continuous with it below, is carried round the earth by the motion of the circular revolution. In the course of this motion it often ignites wherever it may happen to be of the right consistency68, and this we maintain to be the cause of the ‘shooting’ of scattered ‘stars’. We may say, then, that a comet is formed when the upper motion introduces into a gathering69 of this kind a fiery principle not of such excessive strength as to burn up much of the material quickly, nor so weak as soon to be extinguished, but stronger and capable of burning up much material, and when exhalation of the right consistency rises from below and meets it. The kind of comet varies according to the shape which the exhalation happens to take. If it is diffused70 equally on every side the star is said to be fringed, if it stretches out in one direction it is called bearded. We have seen that when a fiery principle of this kind moves we seem to have a shooting-star: similarly when it stands still we seem to have a star standing71 still. We may compare these phenomena to a heap or mass of chaff72 into which a torch is thrust, or a spark thrown. That is what a shooting-star is like. The fuel is so inflammable that the fire runs through it quickly in a line. Now if this fire were to persist instead of running through the fuel and perishing away, its course through the fuel would stop at the point where the latter was densest73, and then the whole might begin to move. Such is a comet-like a shooting-star that contains its beginning and end in itself.
When the matter begins to gather in the lower region independently the comet appears by itself. But when the exhalation is constituted by one of the fixed stars or the planets, owing to their motion, one of them becomes a comet. The fringe is not close to the stars themselves. Just as haloes appear to follow the sun and the moon as they move, and encircle them, when the air is dense enough for them to form along under the sun’s course, so too the fringe. It stands in the relation of a halo to the stars, except that the colour of the halo is due to reflection, whereas in the case of comets the colour is something that appears actually on them.
Now when this matter gathers in relation to a star the comet necessarily appears to follow the same course as the star. But when the comet is formed independently it falls behind the motion of the universe, like the rest of the terrestrial world. It is this fact, that a comet often forms independently, indeed oftener than round one of the regular stars, that makes it impossible to maintain that a comet is a sort of reflection, not indeed, as Hippocrates and his school say, to the sun, but to the very star it is alleged74 to accompany-in fact, a kind of halo in the pure fuel of fire.
As for the halo we shall explain its cause later.
The fact that comets when frequent foreshadow wind and drought must be taken as an indication of their fiery constitution. For their origin is plainly due to the plentiful75 supply of that secretion76. Hence the air is necessarily drier and the moist evaporation is so dissolved and dissipated by the quantity of the hot exhalation as not readily to condense into water.-But this phenomenon too shall be explained more clearly later when the time comes to speak of the winds.-So when there are many comets and they are dense, it is as we say, and the years are clearly dry and windy. When they are fewer and fainter this effect does not appear in the same degree, though as a rule the is found to be excessive either in duration or strength. For instance when the stone at Aegospotami fell out of the air-it had been carried up by a wind and fell down in the daytime-then too a comet happened to have appeared in the west. And at the time of the great comet the winter was dry and north winds prevailed, and the wave was due to an opposition77 of winds. For in the gulf78 a north wind blew and outside it a violent south wind. Again in the archonship of Nicomachus a comet appeared for a few days about the equinoctial circle (this one had not risen in the west), and simultaneously with it there happened the storm at Corinth.
That there are few comets and that they appear rarely and outside the tropic circles more than within them is due to the motion of the sun and the stars. For this motion does not only cause the hot principle to be secreted79 but also dissolves it when it is gathering. But the chief reason is that most of this stuff collects in the region of the milky way.
8

Let us now explain the origin, cause, and nature of the milky way. And here too let us begin by discussing the statements of others on the subject.
(1) Of the so-called Pythagoreans some say that this is the path of one of the stars that fell from heaven at the time of Phaethon’s downfall. Others say that the sun used once to move in this circle and that this region was scorched80 or met with some other affection of this kind, because of the sun and its motion.
But it is absurd not to see that if this were the reason the circle of the Zodiac ought to be affected in the same way, and indeed more so than that of the milky way, since not the sun only but all the planets move in it. We can see the whole of this circle (half of it being visible at any time of the night), but it shows no signs of any such affection except where a part of it touches the circle of the milky way.
(2) Anaxagoras, Democritus, and their schools say that the milky way is the light of certain stars. For, they say, when the sun passes below the earth some of the stars are hidden from it. Now the light of those on which the sun shines is invisible, being obscured by the of the sun. But the milky way is the peculiar light of those stars which are shaded by the earth from the sun’s rays.
This, too, is obviously impossible. The milky way is always unchanged and among the same constellations81 (for it is clearly a greatest circle), whereas, since the sun does not remain in the same place, what is hidden from it differs at different times. Consequently with the change of the sun’s position the milky way ought to change its position too: but we find that this does not happen. Besides, if astronomical demonstrations are correct and the size of the sun is greater than that of the earth and the distance of the stars from the earth many times greater than that of the sun (just as the sun is further from the earth than the moon), then the cone82 made by the rays of the sun would terminate at no great distance from the earth, and the shadow of the earth (what we call night) would not reach the stars. On the contrary, the sun shines on all the stars and the earth screens none of them.
(3) There is a third theory about the milky way. Some say that it is a reflection of our sight to the sun, just as they say that the comet is.
But this too is impossible. For if the eye and the mirror and the whole of the object were severally at rest, then the same part of the image would appear at the same point in the mirror. But if the mirror and the object move, keeping the same distance from the eye which is at rest, but at different rates of speed and so not always at the same interval from one another, then it is impossible for the same image always to appear in the same part of the mirror. Now the constellations included in the circle of the milky way move; and so does the sun, the object to which our sight is reflected; but we stand still. And the distance of those two from us is constant and uniform, but their distance from one another varies. For the Dolphin sometimes rises at midnight, sometimes in the morning. But in each case the same parts of the milky way are found near it. But if it were a reflection and not a genuine affection of these this ought not to be the case.
Again, we can see the milky way reflected at night in water and similar mirrors. But under these circumstances it is impossible for our sight to be reflected to the sun.
These considerations show that the milky way is not the path of one of the planets, nor the light of imperceptible stars, nor a reflection. And those are the chief theories handed down by others hitherto.
Let us recall our fundamental principle and then explain our views. We have already laid down that the outermost part of what is called the air is potentially fire and that therefore when the air is dissolved by motion, there is separated off a kind of matter-and of this matter we assert that comets consist. We must suppose that what happens is the same as in the case of the comets when the matter does not form independently but is formed by one of the fixed stars or the planets. Then these stars appear to be fringed, because matter of this kind follows their course. In the same way, a certain kind of matter follows the sun, and we explain the halo as a reflection from it when the air is of the right constitution. Now we must assume that what happens in the case of the stars severally happens in the case of the whole of the heavens and all the upper motion. For it is natural to suppose that, if the motion of a single star excites a flame, that of all the stars should have a similar result, and especially in that region in which the stars are biggest and most numerous and nearest to one another. Now the circle of the zodiac dissolves this kind of matter because of the motion of the sun and the planets, and for this reason most comets are found outside the tropic circles. Again, no fringe appears round the sun or moon: for they dissolve such matter too quickly to admit of its formation. But this circle in which the milky way appears to our sight is the greatest circle, and its position is such that it extends far outside the tropic circles. Besides the region is full of the biggest and brightest constellations and also of what called ‘scattered’ stars (you have only to look to see this clearly). So for these reasons all this matter is continually and ceaselessly collecting there. A proof of the theory is this: In the circle itself the light is stronger in that half where the milky way is divided, and in it the constellations are more numerous and closer to one another than in the other half; which shows that the cause of the light is the motion of the constellations and nothing else. For if it is found in the circle in which there are most constellations and at that point in the circle at which they are densest and contain the biggest and the most stars, it is natural to suppose that they are the true cause of the affection in question. The circle and the constellations in it may be seen in the diagram. The so-called ‘scattered’ stars it is not possible to set down in the same way on the sphere because none of them have an evident permanent position; but if you look up to the sky the point is clear. For in this circle alone are the intervals full of these stars: in the other circles there are obvious gaps. Hence if we accept the cause assigned for the appearance of comets as plausible83 we must assume that the same kind of thing holds good of the milky way. For the fringe which in the former case is an affection of a single star here forms in the same way in relation to a whole circle. So if we are to define the milky way we may call it ‘a fringe attaching to the greatest circle, and due to the matter secreted’. This, as we said before, explains why there are few comets and why they appear rarely; it is because at each revolution of the heavens this matter has always been and is always being separated off and gathered into this region.
We have now explained the phenomena that occur in that part of the terrestrial world which is continuous with the motions of the heavens, namely, shooting-stars and the burning flame, comets and the milky way, these being the chief affections that appear in that region.
9

Let us go on to treat of the region which follows next in order after this and which immediately surrounds the earth. It is the region common to water and air, and the processes attending the formation of water above take place in it. We must consider the principles and causes of all these phenomena too as before. The efficient and chief and first cause is the circle in which the sun moves. For the sun as it approaches or recedes84, obviously causes dissipation and condensation and so gives rise to generation and destruction. Now the earth remains but the moisture surrounding it is made to evaporate by the sun’s rays and the other heat from above, and rises. But when the heat which was raising it leaves it, in part dispersing85 to the higher region, in part quenched86 through rising so far into the upper air, then the vapour cools because its heat is gone and because the place is cold, and condenses again and turns from air into water. And after the water has formed it falls down again to the earth.
The exhalation of water is vapour: air condensing into water is cloud. Mist is what is left over when a cloud condenses into water, and is therefore rather a sign of fine weather than of rain; for mist might be called a barren cloud. So we get a circular process that follows the course of the sun. For according as the sun moves to this side or that, the moisture in this process rises or falls. We must think of it as a river flowing up and down in a circle and made up partly of air, partly of water. When the sun is near, the stream of vapour flows upwards; when it recedes, the stream of water flows down: and the order of sequence, at all events, in this process always remains the same. So if ‘Oceanus’ had some secret meaning in early writers, perhaps they may have meant this river that flows in a circle about the earth.
So the moisture is always raised by the heat and descends88 to the earth again when it gets cold. These processes and, in some cases, their varieties are distinguished89 by special names. When the water falls in small drops it is called a drizzle90; when the drops are larger it is rain.
10

Some of the vapour that is formed by day does not rise high because the ratio of the fire that is raising it to the water that is being raised is small. When this cools and descends at night it is called dew and hoar-frost. When the vapour is frozen before it has condensed to water again it is hoar-frost; and this appears in winter and is commoner in cold places. It is dew when the vapour has condensed into water and the heat is not so great as to dry up the moisture that has been raised nor the cold sufficient (owing to the warmth of the climate or season) for the vapour itself to freeze. For dew is more commonly found when the season or the place is warm, whereas the opposite, as has been said, is the case with hoar-frost. For obviously vapour is warmer than water, having still the fire that raised it: consequently more cold is needed to freeze it.
Both dew and hoar-frost are found when the sky is clear and there is no wind. For the vapour could not be raised unless the sky were clear, and if a wind were blowing it could not condense.
The fact that hoar-frost is not found on mountains contributes to prove that these phenomena occur because the vapour does not rise high. One reason for this is that it rises from hollow and watery91 places, so that the heat that is raising it, bearing as it were too heavy a burden cannot lift it to a great height but soon lets it fall again. A second reason is that the motion of the air is more pronounced at a height, and this dissolves a gathering of this kind.
Everywhere, except in Pontus, dew is found with south winds and not with north winds. There the opposite is the case and it is found with north winds and not with south. The reason is the same as that which explains why dew is found in warm weather and not in cold. For the south wind brings warm, and the north, wintry weather. For the north wind is cold and so quenches92 the heat of the evaporation. But in Pontus the south wind does not bring warmth enough to cause evaporation, whereas the coldness of the north wind concentrates the heat by a sort of recoil93, so that there is more evaporation and not less. This is a thing which we can often observe in other places too. Wells, for instance, give off more vapour in a north than in a south wind. Only the north winds quench87 the heat before any considerable quantity of vapour has gathered, while in a south wind the evaporation is allowed to accumulate.
Water, once formed, does not freeze on the surface of the earth, in the way that it does in the region of the clouds.
11

From the latter there fall three bodies condensed by cold, namely rain, snow, hail. Two of these correspond to the phenomena on the lower level and are due to the same causes, differing from them only in degree and quantity.
Snow and hoar-frost are one and the same thing, and so are rain and dew: only there is a great deal of the former and little of the latter. For rain is due to the cooling of a great amount of vapour, for the region from which and the time during which the vapour is collected are considerable. But of dew there is little: for the vapour collects for it in a single day and from a small area, as its quick formation and scanty94 quantity show.
The relation of hoar-frost and snow is the same: when cloud freezes there is snow, when vapour freezes there is hoar-frost. Hence snow is a sign of a cold season or country. For a great deal of heat is still present and unless the cold were overpowering it the cloud would not freeze. For there still survives in it a great deal of the heat which caused the moisture to rise as vapour from the earth.
Hail on the other hand is found in the upper region, but the corresponding phenomenon in the vaporous region near the earth is lacking. For, as we said, to snow in the upper region corresponds hoar-frost in the lower, and to rain in the upper region, dew in the lower. But there is nothing here to correspond to hail in the upper region. Why this is so will be clear when we have explained the nature of hail.
12

But we must go on to collect the facts bearing on the origin of it, both those which raise no difficulties and those which seem paradoxical.
Hail is ice, and water freezes in winter; yet hailstorms occur chiefly in spring and autumn and less often in the late summer, but rarely in winter and then only when the cold is less intense. And in general hailstorms occur in warmer, and snow in colder places. Again, there is a difficulty about water freezing in the upper region. It cannot have frozen before becoming water: and water cannot remain suspended in the air for any space of time. Nor can we say that the case is like that of particles of moisture which are carried up owing to their small size and rest on the iar (the water swimming on the air just as small particles of earth and gold often swim on water). In that case large drops are formed by the union of many small, and so fall down. This cannot take place in the case of hail, since solid bodies cannot coalesce62 like liquid ones. Clearly then drops of that size were suspended in the air or else they could not have been so large when frozen.
Some think that the cause and origin of hail is this. The cloud is thrust up into the upper atmosphere, which is colder because the reflection of the sun’s rays from the earth ceases there, and upon its arrival there the water freezes. They think that this explains why hailstorms are commoner in summer and in warm countries; the heat is greater and it thrusts the clouds further up from the earth. But the fact is that hail does not occur at all at a great height: yet it ought to do so, on their theory, just as we see that snow falls most on high mountains. Again clouds have often been observed moving with a great noise close to the earth, terrifying those who heard and saw them as portents95 of some catastrophe96. Sometimes, too, when such clouds have been seen, without any noise, there follows a violent hailstorm, and the stones are of incredible size, and angular in shape. This shows that they have not been falling for long and that they were frozen near to the earth, and not as that theory would have it. Moreover, where the hailstones are large, the cause of their freezing must be present in the highest degree: for hail is ice as every one can see. Now those hailstones are large which are angular in shape. And this shows that they froze close to the earth, for those that fall far are worn away by the length of their fall and become round and smaller in size.
It clearly follows that the congelation does not take place because the cloud is thrust up into the cold upper region.
Now we see that warm and cold react upon one another by recoil. Hence in warm weather the lower parts of the earth are cold and in a frost they are warm. The same thing, we must suppose, happens in the air, so that in the warmer seasons the cold is concentrated by the surrounding heat and causes the cloud to go over into water suddenly. (For this reason rain-drops are much larger on warm days than in winter, and showers more violent. A shower is said to be more violent in proportion as the water comes down in a body, and this happens when the condensation takes place quickly,-though this is just the opposite of what Anaxagoras says. He says that this happens when the cloud has risen into the cold air; whereas we say that it happens when the cloud has descended97 into the warm air, and that the more the further the cloud has descended). But when the cold has been concentrated within still more by the outer heat, it freezes the water it has formed and there is hail. We get hail when the process of freezing is quicker than the descent of the water. For if the water falls in a certain time and the cold is sufficient to freeze it in less, there is no difficulty about its having frozen in the air, provided that the freezing takes place in a shorter time than its fall. The nearer to the earth, and the more suddenly, this process takes place, the more violent is the rain that results and the larger the raindrops and the hailstones because of the shortness of their fall. For the same reason large raindrops do not fall thickly. Hail is rarer in summer than in spring and autumn, though commoner than in winter, because the air is drier in summer, whereas in spring it is still moist, and in autumn it is beginning to grow moist. It is for the same reason that hailstorms sometimes occur in the late summer as we have said.
The fact that the water has previously98 been warmed contributes to its freezing quickly: for so it cools sooner. Hence many people, when they want to cool hot water quickly, begin by putting it in the sun. So the inhabitants of Pontus when they encamp on the ice to fish (they cut a hole in the ice and then fish) pour warm water round their reeds that it may freeze the quicker, for they use the ice like lead to fix the reeds. Now it is in hot countries and seasons that the water which forms soon grows warm.
It is for the same reason that rain falls in summer and not in winter in Arabia and Ethiopia too, and that in torrents99 and repeatedly on the same day. For the concentration or recoil due to the extreme heat of the country cools the clouds quickly.
So much for an account of the nature and causes of rain, dew, snow, hoar-frost, and hail.
13

Let us explain the nature of winds, and all windy vapours, also of rivers and of the sea. But here, too, we must first discuss the difficulties involved: for, as in other matters, so in this no theory has been handed down to us that the most ordinary man could not have thought of.
Some say that what is called air, when it is in motion and flows, is wind, and that this same air when it condenses again becomes cloud and water, implying that the nature of wind and water is the same. So they define wind as a motion of the air. Hence some, wishing to say a clever thing, assert that all the winds are one wind, because the air that moves is in fact all of it one and the same; they maintain that the winds appear to differ owing to the region from which the air may happen to flow on each occasion, but really do not differ at all. This is just like thinking that all rivers are one and the same river, and the ordinary unscientific view is better than a scientific theory like this. If all rivers flow from one source, and the same is true in the case of the winds, there might be some truth in this theory; but if it is no more true in the one case than in the other, this ingenious idea is plainly false. What requires investigation100 is this: the nature of wind and how it originates, its efficient cause and whence they derive10 their source; whether one ought to think of the wind as issuing from a sort of vessel101 and flowing until the vessel is empty, as if let out of a wineskin, or, as painters represent the winds, as drawing their source from themselves.
We find analogous102 views about the origin of rivers. It is thought that the water is raised by the sun and descends in rain and gathers below the earth and so flows from a great reservoir, all the rivers from one, or each from a different one. No water at all is generated, but the volume of the rivers consists of the water that is gathered into such reservoirs in winter. Hence rivers are always fuller in winter than in summer, and some are perennial103, others not. Rivers are perennial where the reservoir is large and so enough water has collected in it to last out and not be used up before the winter rain returns. Where the reservoirs are smaller there is less water in the rivers, and they are dried up and their vessel empty before the fresh rain comes on.
But if any one will picture to himself a reservoir adequate to the water that is continuously flowing day by day, and consider the amount of the water, it is obvious that a receptacle that is to contain all the water that flows in the year would be larger than the earth, or, at any rate, not much smaller.
Though it is evident that many reservoirs of this kind do exist in many parts of the earth, yet it is unreasonable104 for any one to refuse to admit that air becomes water in the earth for the same reason as it does above it. If the cold causes the vaporous air to condense into water above the earth we must suppose the cold in the earth to produce this same effect, and recognize that there not only exists in it and flows out of it actually formed water, but that water is continually forming in it too.
Again, even in the case of the water that is not being formed from day to day but exists as such, we must not suppose as some do that rivers have their source in definite subterranean lakes. On the contrary, just as above the earth small drops form and these join others, till finally the water descends in a body as rain, so too we must suppose that in the earth the water at first trickles105 together little by little, and that the sources of the rivers drip, as it were, out of the earth and then unite. This is proved by facts. When men construct an aqueduct they collect the water in pipes and trenches, as if the earth in the higher ground were sweating the water out. Hence, too, the head-waters of rivers are found to flow from mountains, and from the greatest mountains there flow the most numerous and greatest rivers. Again, most springs are in the neighbourhood of mountains and of high ground, whereas if we except rivers, water rarely appears in the plains. For mountains and high ground, suspended over the country like a saturated107 sponge, make the water ooze108 out and trickle106 together in minute quantities but in many places. They receive a great deal of water falling as rain (for it makes no difference whether a spongy receptacle is concave and turned up or convex and turned down: in either case it will contain the same volume of matter) and, they also cool the vapour that rises and condense it back into water.
Hence, as we said, we find that the greatest rivers flow from the greatest mountains. This can be seen by looking at itineraries109: what is recorded in them consists either of things which the writer has seen himself or of such as he has compiled after inquiry from those who have seen them.
In Asia we find that the most numerous and greatest rivers flow from the mountain called Parnassus, admittedly the greatest of all mountains towards the south-east. When you have crossed it you see the outer ocean, the further limit of which is unknown to the dwellers110 in our world. Besides other rivers there flow from it the Bactrus, the Choaspes, the Araxes: from the last a branch separates off and flows into lake Maeotis as the Tanais. From it, too, flows the Indus, the volume of whose stream is greatest of all rivers. From the Caucasus flows the Phasis, and very many other great rivers besides. Now the Caucasus is the greatest of the mountains that lie to the northeast, both as regards its extent and its height. A proof of its height is the fact that it can be seen from the so-called ‘deeps’ and from the entrance to the lake. Again, the sun shines on its peaks for a third part of the night before sunrise and again after sunset. Its extent is proved by the fact that thought contains many inhabitable regions which are occupied by many nations and in which there are said to be great lakes, yet they say that all these regions are visible up to the last peak. From Pyrene (this is a mountain towards the west in Celtice) there flow the Istrus and the Tartessus. The latter flows outside the pillars, while the Istrus flows through all Europe into the Euxine. Most of the remaining rivers flow northwards from the Hercynian mountains, which are the greatest in height and extent about that region. In the extreme north, beyond furthest Scythia, are the mountains called Rhipae. The stories about their size are altogether too fabulous111: however, they say that the most and (after the Istrus) the greatest rivers flow from them. So, too, in Libya there flow from the Aethiopian mountains the Aegon and the Nyses; and from the so-called Silver Mountain the two greatest of named rivers, the river called Chremetes that flows into the outer ocean, and the main source of the Nile. Of the rivers in the Greek world, the Achelous flows from Pindus, the Inachus from the same mountain; the Strymon, the Nestus, and the Hebrus all three from Scombrus; many rivers, too, flow from Rhodope.
All other rivers would be found to flow in the same way, but we have mentioned these as examples. Even where rivers flow from marshes112, the marshes in almost every case are found to lie below mountains or gradually rising ground.
It is clear then that we must not suppose rivers to originate from definite reservoirs: for the whole earth, we might almost say, would not be sufficient (any more than the region of the clouds would be) if we were to suppose that they were fed by actually existing water only and it were not the case that as some water passed out of existence some more came into existence, but rivers always drew their stream from an existing store. Secondly113, the fact that rivers rise at the foot of mountains proves that a place transmits the water it contains by gradual percolation114 of many drops, little by little, and that this is how the sources of rivers originate. However, there is nothing impossible about the existence of such places containing a quantity of water like lakes: only they cannot be big enough to produce the supposed effect. To think that they are is just as absurd as if one were to suppose that rivers drew all their water from the sources we see (for most rivers do flow from springs). So it is no more reasonable to suppose those lakes to contain the whole volume of water than these springs.
That there exist such chasms and cavities in the earth we are taught by the rivers that are swallowed up. They are found in many parts of the earth: in the Peloponnesus, for instance, there are many such rivers in Arcadia. The reason is that Arcadia is mountainous and there are no channels from its valleys to the sea. So these places get full of water, and this, having no outlet115, under the pressure of the water that is added above, finds a way out for itself underground. In Greece this kind of thing happens on quite a small scale, but the lake at the foot of the Caucasus, which the inhabitants of these parts call a sea, is considerable. Many great rivers fall into it and it has no visible outlet but issues below the earth off the land of the Coraxi about the so-called ‘deeps of Pontus’. This is a place of unfathomable depth in the sea: at any rate no one has yet been able to find bottom there by sounding. At this spot, about three hundred stadia from land, there comes up sweet water over a large area, not all of it together but in three places. And in Liguria a river equal in size to the Rhodanus is swallowed up and appears again elsewhere: the Rhodanus being a navigable river.
14

The same parts of the earth are not always moist or dry, but they change according as rivers come into existence and dry up. And so the relation of land to sea changes too and a place does not always remain land or sea throughout all time, but where there was dry land there comes to be sea, and where there is now sea, there one day comes to be dry land. But we must suppose these changes to follow some order and cycle. The principle and cause of these changes is that the interior of the earth grows and decays, like the bodies of plants and animals. Only in the case of these latter the process does not go on by parts, but each of them necessarily grows or decays as a whole, whereas it does go on by parts in the case of the earth. Here the causes are cold and heat, which increase and diminish on account of the sun and its course. It is owing to them that the parts of the earth come to have a different character, that some parts remain moist for a certain time, and then dry up and grow old, while other parts in their turn are filled with life and moisture. Now when places become drier the springs necessarily give out, and when this happens the rivers first decrease in size and then finally become dry; and when rivers change and disappear in one part and come into existence correspondingly in another, the sea must needs be affected.
If the sea was once pushed out by rivers and encroached upon the land anywhere, it necessarily leaves that place dry when it recedes; again, if the dry land has encroached on the sea at all by a process of silting116 set up by the rivers when at their full, the time must come when this place will be flooded again.
But the whole vital process of the earth takes place so gradually and in periods of time which are so immense compared with the length of our life, that these changes are not observed, and before their course can be recorded from beginning to end whole nations perish and are destroyed. Of such destructions the most utter and sudden are due to wars; but pestilence118 or famine cause them too. Famines, again, are either sudden and severe or else gradual. In the latter case the disappearance119 of a nation is not noticed because some leave the country while others remain; and this goes on until the land is unable to maintain any inhabitants at all. So a long period of time is likely to elapse from the first departure to the last, and no one remembers and the lapse120 of time destroys all record even before the last inhabitants have disappeared. In the same way a nation must be supposed to lose account of the time when it first settled in a land that was changing from a marshy and watery state and becoming dry. Here, too, the change is gradual and lasts a long time and men do not remember who came first, or when, or what the land was like when they came. This has been the case with Egypt. Here it is obvious that the land is continually getting drier and that the whole country is a deposit of the river Nile. But because the neighbouring peoples settled in the land gradually as the marshes dried, the lapse of time has hidden the beginning of the process. However, all the mouths of the Nile, with the single exception of that at Canopus, are obviously artificial and not natural. And Egypt was nothing more than what is called Thebes, as Homer, too, shows, modern though he is in relation to such changes. For Thebes is the place that he mentions; which implies that Memphis did not yet exist, or at any rate was not as important as it is now. That this should be so is natural, since the lower land came to be inhabited later than that which lay higher. For the parts that lie nearer to the place where the river is depositing the silt117 are necessarily marshy for a longer time since the water always lies most in the newly formed land. But in time this land changes its character, and in its turn enjoys a period of prosperity. For these places dry up and come to be in good condition while the places that were formerly121 well-tempered some day grow excessively dry and deteriorate122. This happened to the land of Argos and Mycenae in Greece. In the time of the Trojan wars the Argive land was marshy and could only support a small population, whereas the land of Mycenae was in good condition (and for this reason Mycenae was the superior). But now the opposite is the case, for the reason we have mentioned: the land of Mycenae has become completely dry and barren, while the Argive land that was formerly barren owing to the water has now become fruitful. Now the same process that has taken place in this small district must be supposed to be going on over whole countries and on a large scale.
Men whose outlook is narrow suppose the cause of such events to be change in the universe, in the sense of a coming to be of the world as a whole. Hence they say that the sea being dried up and is growing less, because this is observed to have happened in more places now than formerly. But this is only partially123 true. It is true that many places are now dry, that formerly were covered with water. But the opposite is true too: for if they look they will find that there are many places where the sea has invaded the land. But we must not suppose that the cause of this is that the world is in process of becoming. For it is absurd to make the universe to be in process because of small and trifling124 changes, when the bulk and size of the earth are surely as nothing in comparison with the whole world. Rather we must take the cause of all these changes to be that, just as winter occurs in the seasons of the year, so in determined periods there comes a great winter of a great year and with it excess of rain. But this excess does not always occur in the same place. The deluge125 in the time of Deucalion, for instance, took place chiefly in the Greek world and in it especially about ancient Hellas, the country about Dodona and the Achelous, a river which has often changed its course. Here the Selli dwelt and those who were formerly called Graeci and now Hellenes. When, therefore, such an excess of rain occurs we must suppose that it suffices for a long time. We have seen that some say that the size of the subterranean cavities is what makes some rivers perennial and others not, whereas we maintain that the size of the mountains is the cause, and their density126 and coldness; for great, dense, and cold mountains catch and keep and create most water: whereas if the mountains that overhang the sources of rivers are small or porous29 and stony127 and clayey, these rivers run dry earlier. We must recognize the same kind of thing in this case too. Where such abundance of rain falls in the great winter it tends to make the moisture of those places almost everlasting128. But as time goes on places of the latter type dry up more, while those of the former, moist type, do so less: until at last the beginning of the same cycle returns.
Since there is necessarily some change in the whole world, but not in the way of coming into existence or perishing (for the universe is permanent), it must be, as we say, that the same places are not for ever moist through the presence of sea and rivers, nor for ever dry. And the facts prove this. The whole land of the Egyptians, whom we take to be the most ancient of men, has evidently gradually come into existence and been produced by the river. This is clear from an observation of the country, and the facts about the Red Sea suffice to prove it too. One of their kings tried to make a canal to it (for it would have been of no little advantage to them for the whole region to have become navigable; Sesostris is said to have been the first of the ancient kings to try), but he found that the sea was higher than the land. So he first, and Darius afterwards, stopped making the canal, lest the sea should mix with the river water and spoil it. So it is clear that all this part was once unbroken sea. For the same reason Libya-the country of Ammon-is, strangely enough, lower and hollower than the land to the seaward of it. For it is clear that a barrier of silt was formed and after it lakes and dry land, but in course of time the water that was left behind in the lakes dried up and is now all gone. Again the silting up of the lake Maeotis by the rivers has advanced so much that the limit to the size of the ships which can now sail into it to trade is much lower than it was sixty years ago. Hence it is easy to infer that it, too, like most lakes, was originally produced by the rivers and that it must end by drying up entirely129.
Again, this process of silting up causes a continuous current through the Bosporus; and in this case we can directly observe the nature of the process. Whenever the current from the Asiatic shore threw up a sandbank, there first formed a small lake behind it. Later it dried up and a second sandbank formed in front of the first and a second lake. This process went on uniformly and without interruption. Now when this has been repeated often enough, in the course of time the strait must become like a river, and in the end the river itself must dry up.
So it is clear, since there will be no end to time and the world is eternal, that neither the Tanais nor the Nile has always been flowing, but that the region whence they flow was once dry: for their effect may be fulfilled, but time cannot. And this will be equally true of all other rivers. But if rivers come into existence and perish and the same parts of the earth were not always moist, the sea must needs change correspondingly. And if the sea is always advancing in one place and receding130 in another it is clear that the same parts of the whole earth are not always either sea or land, but that all this changes in course of time.
So we have explained that the same parts of the earth are not always land or sea and why that is so: and also why some rivers are perennial and others not.

点击收听单词发音收听单词发音  

1 specifying ca4cf95d0de82d4463dfea22d3f8c836     
v.指定( specify的现在分词 );详述;提出…的条件;使具有特性
参考例句:
  • When we describe what the action will affect, we are specifying the noun of the sentence. 当描述动作会影响到什么时,我们指定组成句子的名词。 来自About Face 3交互设计精髓
  • Procurement section only lists opportunistic infection drugs without specifying which drugs. 采购部分只说明有治疗机会性感染的药物,但并没有说明是什么药物。 来自互联网
2 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
3 inquiry nbgzF     
n.打听,询问,调查,查问
参考例句:
  • Many parents have been pressing for an inquiry into the problem.许多家长迫切要求调查这个问题。
  • The field of inquiry has narrowed down to five persons.调查的范围已经缩小到只剩5个人了。
4 predecessors b59b392832b9ce6825062c39c88d5147     
n.前任( predecessor的名词复数 );前辈;(被取代的)原有事物;前身
参考例句:
  • The new government set about dismantling their predecessors' legislation. 新政府正着手废除其前任所制定的法律。 来自《简明英汉词典》
  • Will new plan be any more acceptable than its predecessors? 新计划比原先的计划更能令人满意吗? 来自《简明英汉词典》
5 milky JD0xg     
adj.牛奶的,多奶的;乳白色的
参考例句:
  • Alexander always has milky coffee at lunchtime.亚历山大总是在午餐时喝掺奶的咖啡。
  • I like a hot milky drink at bedtime.我喜欢睡前喝杯热奶饮料。
6 undertaking Mfkz7S     
n.保证,许诺,事业
参考例句:
  • He gave her an undertaking that he would pay the money back with in a year.他向她做了一年内还钱的保证。
  • He is too timid to venture upon an undertaking.他太胆小,不敢从事任何事业。
7 akin uxbz2     
adj.同族的,类似的
参考例句:
  • She painted flowers and birds pictures akin to those of earlier feminine painters.她画一些同早期女画家类似的花鸟画。
  • Listening to his life story is akin to reading a good adventure novel.听他的人生故事犹如阅读一本精彩的冒险小说。
8 immediate aapxh     
adj.立即的;直接的,最接近的;紧靠的
参考例句:
  • His immediate neighbours felt it their duty to call.他的近邻认为他们有责任去拜访。
  • We declared ourselves for the immediate convocation of the meeting.我们主张立即召开这个会议。
9 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
10 derive hmLzH     
v.取得;导出;引申;来自;源自;出自
参考例句:
  • We derive our sustenance from the land.我们从土地获取食物。
  • We shall derive much benefit from reading good novels.我们将从优秀小说中获得很大好处。
11 clement AVhyV     
adj.仁慈的;温和的
参考例句:
  • A clement judge reduced his sentence.一位仁慈的法官为他减了刑。
  • The planet's history contains many less stable and clement eras than the holocene.地球的历史包含着许多不如全新世稳定与温和的地质时期。
12 affected TzUzg0     
adj.不自然的,假装的
参考例句:
  • She showed an affected interest in our subject.她假装对我们的课题感到兴趣。
  • His manners are affected.他的态度不自然。
13 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
14 phenomena 8N9xp     
n.现象
参考例句:
  • Ade couldn't relate the phenomena with any theory he knew.艾德无法用他所知道的任何理论来解释这种现象。
  • The object of these experiments was to find the connection,if any,between the two phenomena.这些实验的目的就是探索这两种现象之间的联系,如果存在着任何联系的话。
15 relatively bkqzS3     
adv.比较...地,相对地
参考例句:
  • The rabbit is a relatively recent introduction in Australia.兔子是相对较新引入澳大利亚的物种。
  • The operation was relatively painless.手术相对来说不痛。
16 astronomical keTyO     
adj.天文学的,(数字)极大的
参考例句:
  • He was an expert on ancient Chinese astronomical literature.他是研究中国古代天文学文献的专家。
  • Houses in the village are selling for astronomical prices.乡村的房价正在飙升。
17 demonstrations 0922be6a2a3be4bdbebd28c620ab8f2d     
证明( demonstration的名词复数 ); 表明; 表达; 游行示威
参考例句:
  • Lectures will be interspersed with practical demonstrations. 讲课中将不时插入实际示范。
  • The new military government has banned strikes and demonstrations. 新的军人政府禁止罢工和示威活动。
18 subterranean ssWwo     
adj.地下的,地表下的
参考例句:
  • London has 9 miles of such subterranean passages.伦敦像这样的地下通道有9英里长。
  • We wandered through subterranean passages.我们漫游地下通道。
19 spoke XryyC     
n.(车轮的)辐条;轮辐;破坏某人的计划;阻挠某人的行动 v.讲,谈(speak的过去式);说;演说;从某种观点来说
参考例句:
  • They sourced the spoke nuts from our company.他们的轮辐螺帽是从我们公司获得的。
  • The spokes of a wheel are the bars that connect the outer ring to the centre.辐条是轮子上连接外圈与中心的条棒。
20 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
21 infinitely 0qhz2I     
adv.无限地,无穷地
参考例句:
  • There is an infinitely bright future ahead of us.我们有无限光明的前途。
  • The universe is infinitely large.宇宙是无限大的。
22 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
23 puerile 70Vza     
adj.幼稚的,儿童的
参考例句:
  • The story is simple,even puerile.故事很简单,甚至有些幼稚。
  • Concert organisers branded the group's actions as puerile.音乐会的组织者指称该乐队的行为愚蠢幼稚。
24 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
25 appreciably hNKyx     
adv.相当大地
参考例句:
  • The index adds appreciably to the usefulness of the book. 索引明显地增加了这本书的实用价值。
  • Otherwise the daily mean is perturbed appreciably by the lunar constituents. 否则,日平均值就会明显地受到太阳分潮的干扰。
26 disperse ulxzL     
vi.使分散;使消失;vt.分散;驱散
参考例句:
  • The cattle were swinging their tails to disperse the flies.那些牛甩动着尾巴驱赶苍蝇。
  • The children disperse for the holidays.孩子们放假了。
27 infinity o7QxG     
n.无限,无穷,大量
参考例句:
  • It is impossible to count up to infinity.不可能数到无穷大。
  • Theoretically,a line can extend into infinity.从理论上来说直线可以无限地延伸。
28 mere rC1xE     
adj.纯粹的;仅仅,只不过
参考例句:
  • That is a mere repetition of what you said before.那不过是重复了你以前讲的话。
  • It's a mere waste of time waiting any longer.再等下去纯粹是浪费时间。
29 porous 91szq     
adj.可渗透的,多孔的
参考例句:
  • He added sand to the soil to make it more porous.他往土里掺沙子以提高渗水性能。
  • The shell has to be slightly porous to enable oxygen to pass in.外壳不得不有些细小的孔以便能使氧气通过。
30 dense aONzX     
a.密集的,稠密的,浓密的;密度大的
参考例句:
  • The general ambushed his troops in the dense woods. 将军把部队埋伏在浓密的树林里。
  • The path was completely covered by the dense foliage. 小路被树叶厚厚地盖了一层。
31 inflames 486bf23406dec9844b97f966f4636c9b     
v.(使)变红,发怒,过热( inflame的第三人称单数 )
参考例句:
  • The Captain inflames the crew with his rhetoric. 船长以他的辩才点燃了船员心中之火。 来自辞典例句
  • However, the release of antibodies also inflames the bronchi and bronchioles. 然而,抗体的产生也导致了了支气管和细支气管群的发炎。 来自互联网
32 inflame Hk9ye     
v.使燃烧;使极度激动;使发炎
参考例句:
  • Our lack of response seemed to inflame the colonel.由于我们没有反应,好象惹恼了那个上校。
  • Chemical agents manufactured by our immune system inflame our cells and tissues,causing our nose to run and our throat to swell.我们的免疫系统产生的化学物质导致我们的细胞和组织发炎,导致我们流鼻水和我们的喉咙膨胀。
33 possessed xuyyQ     
adj.疯狂的;拥有的,占有的
参考例句:
  • He flew out of the room like a man possessed.他像着了魔似地猛然冲出房门。
  • He behaved like someone possessed.他行为举止像是魔怔了。
34 virtue BpqyH     
n.德行,美德;贞操;优点;功效,效力
参考例句:
  • He was considered to be a paragon of virtue.他被认为是品德尽善尽美的典范。
  • You need to decorate your mind with virtue.你应该用德行美化心灵。
35 circumference HOszh     
n.圆周,周长,圆周线
参考例句:
  • It's a mile round the circumference of the field.运动场周长一英里。
  • The diameter and the circumference of a circle correlate.圆的直径与圆周有相互关系。
36 marshy YBZx8     
adj.沼泽的
参考例句:
  • In August 1935,we began our march across the marshy grassland. 1935年8月,我们开始过草地。
  • The surrounding land is low and marshy. 周围的地低洼而多沼泽。
37 fiery ElEye     
adj.燃烧着的,火红的;暴躁的;激烈的
参考例句:
  • She has fiery red hair.她有一头火红的头发。
  • His fiery speech agitated the crowd.他热情洋溢的讲话激动了群众。
38 treatise rpWyx     
n.专著;(专题)论文
参考例句:
  • The doctor wrote a treatise on alcoholism.那位医生写了一篇关于酗酒问题的论文。
  • This is not a treatise on statistical theory.这不是一篇有关统计理论的论文。
39 scattered 7jgzKF     
adj.分散的,稀疏的;散步的;疏疏落落的
参考例句:
  • Gathering up his scattered papers,he pushed them into his case.他把散乱的文件收拾起来,塞进文件夹里。
40 downwards MsDxU     
adj./adv.向下的(地),下行的(地)
参考例句:
  • He lay face downwards on his bed.他脸向下伏在床上。
  • As the river flows downwards,it widens.这条河愈到下游愈宽。
41 suffix AhMzMc     
n.后缀;vt.添后缀
参考例句:
  • We add the suffix "ly" to make the adjective "quick" into the adverb " quickly ".我们在形容词“ quick”后加“ly” 构成副词“quickly”。
  • It described the meaning of suffix array and also how to built it.它描述的含义,后缀数组以及如何建立它。
42 celestial 4rUz8     
adj.天体的;天上的
参考例句:
  • The rosy light yet beamed like a celestial dawn.玫瑰色的红光依然象天上的朝霞一样绚丽。
  • Gravity governs the motions of celestial bodies.万有引力控制着天体的运动。
43 evaporation Pnoxc     
n.蒸发,消失
参考例句:
  • Be careful not to lose too much liquid by evaporation.小心不要因蒸发失去太多水分。
  • Our bodies can sweat,thereby losing heat by evaporation.我们的身体能出汗,由此可以蒸发散热。
44 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
45 terminology spmwD     
n.术语;专有名词
参考例句:
  • He particularly criticized the terminology in the document.他特别批评了文件中使用的术语。
  • The article uses rather specialized musical terminology.这篇文章用了相当专业的音乐术语。
46 disposition GljzO     
n.性情,性格;意向,倾向;排列,部署
参考例句:
  • He has made a good disposition of his property.他已对财产作了妥善处理。
  • He has a cheerful disposition.他性情开朗。
47 combustible yqizS     
a. 易燃的,可燃的; n. 易燃物,可燃物
参考例句:
  • Don't smoke near combustible materials. 别在易燃的材料附近吸烟。
  • We mustn't take combustible goods aboard. 我们不可带易燃品上车。
48 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
49 condensation YYyyr     
n.压缩,浓缩;凝结的水珠
参考例句:
  • A cloud is a condensation of water vapour in the atmosphere.云是由大气中的水蒸气凝结成的。
  • He used his sleeve to wipe the condensation off the glass.他用袖子擦掉玻璃上凝结的水珠。
50 combustion 4qKzS     
n.燃烧;氧化;骚动
参考例句:
  • We might be tempted to think of combustion.我们也许会联想到氧化。
  • The smoke formed by their combustion is negligible.由它燃烧所生成的烟是可忽略的。
51 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
52 compulsory 5pVzu     
n.强制的,必修的;规定的,义务的
参考例句:
  • Is English a compulsory subject?英语是必修课吗?
  • Compulsory schooling ends at sixteen.义务教育至16岁为止。
53 obliquely ad073d5d92dfca025ebd4a198e291bdc     
adv.斜; 倾斜; 间接; 不光明正大
参考例句:
  • From the gateway two paths led obliquely across the court. 从门口那儿,有两条小路斜越过院子。 来自辞典例句
  • He was receding obliquely with a curious hurrying gait. 他歪着身子,古怪而急促地迈着步子,往后退去。 来自辞典例句
54 oblique x5czF     
adj.斜的,倾斜的,无诚意的,不坦率的
参考例句:
  • He made oblique references to her lack of experience.他拐弯抹角地说她缺乏经验。
  • She gave an oblique look to one side.她向旁边斜看了一眼。
55 contraction sn6yO     
n.缩略词,缩写式,害病
参考例句:
  • The contraction of this muscle raises the lower arm.肌肉的收缩使前臂抬起。
  • The forces of expansion are balanced by forces of contraction.扩张力和收缩力相互平衡。
56 chasms 59f980d139181b57c2aa4045ac238a6f     
裂缝( chasm的名词复数 ); 裂口; 分歧; 差别
参考例句:
  • She found great chasms in her mathematics and physics. 她觉得她的数学课和物理课的知识还很欠缺。
  • The sectarian chasms remain deep, the wounds of strife raw. 各派别的分歧巨大,旧恨新仇交织。
57 trenches ed0fcecda36d9eed25f5db569f03502d     
深沟,地沟( trench的名词复数 ); 战壕
参考例句:
  • life in the trenches 第一次世界大战期间的战壕生活
  • The troops stormed the enemy's trenches and fanned out across the fields. 部队猛攻敌人的战壕,并在田野上呈扇形散开。
58 crimson AYwzH     
n./adj.深(绯)红色(的);vi.脸变绯红色
参考例句:
  • She went crimson with embarrassment.她羞得满脸通红。
  • Maple leaves have turned crimson.枫叶已经红了。
59 peculiar cinyo     
adj.古怪的,异常的;特殊的,特有的
参考例句:
  • He walks in a peculiar fashion.他走路的样子很奇特。
  • He looked at me with a very peculiar expression.他用一种很奇怪的表情看着我。
60 simultaneously 4iBz1o     
adv.同时发生地,同时进行地
参考例句:
  • The radar beam can track a number of targets almost simultaneously.雷达波几乎可以同时追着多个目标。
  • The Windows allow a computer user to execute multiple programs simultaneously.Windows允许计算机用户同时运行多个程序。
61 coalescence CWbyj     
n.合并,联合
参考例句:
  • It is formed by the coalescence of the first three neuromeres in the embryo .它是由胚胎时的前三个神经原节愈合而成的。
  • The other process of droplet growth is by collision and coalescence.云滴增长的另一个过程是各云滴间的碰撞和并合。
62 coalesce oWhyj     
v.联合,结合,合并
参考例句:
  • And these rings of gas would then eventually coalesce and form the planets.这些气体环最后终于凝结形成行星。
  • They will probably collide again and again until they coalesce.他们可能会一次又一次地发生碰撞,直到他们合并。
63 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
64 thigh RItzO     
n.大腿;股骨
参考例句:
  • He is suffering from a strained thigh muscle.他的大腿肌肉拉伤了,疼得很。
  • The thigh bone is connected to the hip bone.股骨连着髋骨。
65 receded a802b3a97de1e72adfeda323ad5e0023     
v.逐渐远离( recede的过去式和过去分词 );向后倾斜;自原处后退或避开别人的注视;尤指问题
参考例句:
  • The floodwaters have now receded. 洪水现已消退。
  • The sound of the truck receded into the distance. 卡车的声音渐渐在远处消失了。
66 inaccessible 49Nx8     
adj.达不到的,难接近的
参考例句:
  • This novel seems to me among the most inaccessible.这本书对我来说是最难懂的小说之一。
  • The top of Mount Everest is the most inaccessible place in the world.珠穆朗玛峰是世界上最难到达的地方。
67 outermost w4fzc     
adj.最外面的,远离中心的
参考例句:
  • He fired and hit the outermost ring of the target.他开枪射中了靶子的最外一环。
  • The outermost electron is shielded from the nucleus.原子核对最外层电子的作用受到屏蔽。
68 consistency IY2yT     
n.一贯性,前后一致,稳定性;(液体的)浓度
参考例句:
  • Your behaviour lacks consistency.你的行为缺乏一贯性。
  • We appreciate the consistency and stability in China and in Chinese politics.我们赞赏中国及其政策的连续性和稳定性。
69 gathering ChmxZ     
n.集会,聚会,聚集
参考例句:
  • He called on Mr. White to speak at the gathering.他请怀特先生在集会上讲话。
  • He is on the wing gathering material for his novels.他正忙于为他的小说收集资料。
70 diffused 5aa05ed088f24537ef05f482af006de0     
散布的,普及的,扩散的
参考例句:
  • A drop of milk diffused in the water. 一滴牛奶在水中扩散开来。
  • Gases and liquids diffused. 气体和液体慢慢混合了。
71 standing 2hCzgo     
n.持续,地位;adj.永久的,不动的,直立的,不流动的
参考例句:
  • After the earthquake only a few houses were left standing.地震过后只有几幢房屋还立着。
  • They're standing out against any change in the law.他们坚决反对对法律做任何修改。
72 chaff HUGy5     
v.取笑,嘲笑;n.谷壳
参考例句:
  • I didn't mind their chaff.我不在乎他们的玩笑。
  • Old birds are not caught with chaff.谷糠难诱老雀。
73 densest 196f3886c6c5dffe98d26ccca5d0e045     
密集的( dense的最高级 ); 密度大的; 愚笨的; (信息量大得)难理解的
参考例句:
  • Past Botoi some of the densest jungle forests on Anopopei grew virtually into the water. 过了坊远湾,岛上的莽莽丛林便几乎直长到水中。
  • Earth is the densest of all of these remaining planets. 地球是所剩下行星中最致密的星球。
74 alleged gzaz3i     
a.被指控的,嫌疑的
参考例句:
  • It was alleged that he had taken bribes while in office. 他被指称在任时收受贿赂。
  • alleged irregularities in the election campaign 被指称竞选运动中的不正当行为
75 plentiful r2izH     
adj.富裕的,丰富的
参考例句:
  • Their family has a plentiful harvest this year.他们家今年又丰收了。
  • Rainfall is plentiful in the area.这个地区雨量充足。
76 secretion QDozG     
n.分泌
参考例句:
  • Is there much secretion from your eyes?你眼里的分泌物多吗?
  • In addition,excessive secretion of oil,water scarcity are also major factors.除此之外,油脂分泌过盛、缺水也都是主要因素。
77 opposition eIUxU     
n.反对,敌对
参考例句:
  • The party leader is facing opposition in his own backyard.该党领袖在自己的党內遇到了反对。
  • The police tried to break down the prisoner's opposition.警察设法制住了那个囚犯的反抗。
78 gulf 1e0xp     
n.海湾;深渊,鸿沟;分歧,隔阂
参考例句:
  • The gulf between the two leaders cannot be bridged.两位领导人之间的鸿沟难以跨越。
  • There is a gulf between the two cities.这两座城市间有个海湾。
79 secreted a4714b3ddc8420a17efed0cdc6ce32bb     
v.(尤指动物或植物器官)分泌( secrete的过去式和过去分词 );隐匿,隐藏
参考例句:
  • Insulin is secreted by the pancreas. 胰岛素是胰腺分泌的。
  • He secreted his winnings in a drawer. 他把赢来的钱藏在抽届里。 来自《简明英汉词典》
80 scorched a5fdd52977662c80951e2b41c31587a0     
烧焦,烤焦( scorch的过去式和过去分词 ); 使(植物)枯萎,把…晒枯; 高速行驶; 枯焦
参考例句:
  • I scorched my dress when I was ironing it. 我把自己的连衣裙熨焦了。
  • The hot iron scorched the tablecloth. 热熨斗把桌布烫焦了。
81 constellations ee34f7988ee4aa80f9502f825177c85d     
n.星座( constellation的名词复数 );一群杰出人物;一系列(相关的想法、事物);一群(相关的人)
参考例句:
  • The map of the heavens showed all the northern constellations. 这份天体图标明了北半部所有的星座。 来自《简明英汉词典》
  • His time was coming, he would move in the constellations of power. 他时来运转,要进入权力中心了。 来自教父部分
82 cone lYJyi     
n.圆锥体,圆锥形东西,球果
参考例句:
  • Saw-dust piled up in a great cone.锯屑堆积如山。
  • The police have sectioned off part of the road with traffic cone.警察用锥形路标把部分路面分隔开来。
83 plausible hBCyy     
adj.似真实的,似乎有理的,似乎可信的
参考例句:
  • His story sounded plausible.他说的那番话似乎是真实的。
  • Her story sounded perfectly plausible.她的说辞听起来言之有理。
84 recedes 45c5e593c51b7d92bf60642a770f43cb     
v.逐渐远离( recede的第三人称单数 );向后倾斜;自原处后退或避开别人的注视;尤指问题
参考例句:
  • For this reason the near point gradually recedes as one grows older. 由于这个原因,随着人渐渐变老,近点便逐渐后退。 来自辞典例句
  • Silent, mournful, abandoned, broken, Czechoslovakia recedes into the darkness. 缄默的、悲哀的、被抛弃的、支离破碎的捷克斯洛伐克,已在黑暗之中。 来自辞典例句
85 dispersing dispersing     
adj. 分散的 动词disperse的现在分词形式
参考例句:
  • Whereas gasoline fumes linger close to the ground before dispersing. 而汽油烟气却靠近地面迟迟不散。
  • Earthworms may be instrumental in dispersing fungi or bacteria. 蚯蚓可能是散布真菌及细菌的工具。
86 quenched dae604e1ea7cf81e688b2bffd9b9f2c4     
解(渴)( quench的过去式和过去分词 ); 终止(某事物); (用水)扑灭(火焰等); 将(热物体)放入水中急速冷却
参考例句:
  • He quenched his thirst with a long drink of cold water. 他喝了好多冷水解渴。
  • I quenched my thirst with a glass of cold beer. 我喝了一杯冰啤酒解渴。
87 quench ii3yQ     
vt.熄灭,扑灭;压制
参考例句:
  • The firemen were unable to quench the fire.消防人员无法扑灭这场大火。
  • Having a bottle of soft drink is not enough to quench my thirst.喝一瓶汽水不够解渴。
88 descends e9fd61c3161a390a0db3b45b3a992bee     
v.下来( descend的第三人称单数 );下去;下降;下斜
参考例句:
  • This festival descends from a religious rite. 这个节日起源于宗教仪式。 来自《简明英汉词典》
  • The path descends steeply to the village. 小路陡直而下直到村子。 来自《简明英汉词典》
89 distinguished wu9z3v     
adj.卓越的,杰出的,著名的
参考例句:
  • Elephants are distinguished from other animals by their long noses.大象以其长长的鼻子显示出与其他动物的不同。
  • A banquet was given in honor of the distinguished guests.宴会是为了向贵宾们致敬而举行的。
90 drizzle Mrdxn     
v.下毛毛雨;n.毛毛雨,蒙蒙细雨
参考例句:
  • The shower tailed off into a drizzle.阵雨越来越小,最后变成了毛毛雨。
  • Yesterday the radio forecast drizzle,and today it is indeed raining.昨天预报有小雨,今天果然下起来了。
91 watery bU5zW     
adj.有水的,水汪汪的;湿的,湿润的
参考例句:
  • In his watery eyes there is an expression of distrust.他那含泪的眼睛流露出惊惶失措的神情。
  • Her eyes became watery because of the smoke.因为烟熏,她的双眼变得泪汪汪的。
92 quenches 63be16a42040816241b77a3183f318cc     
解(渴)( quench的第三人称单数 ); 终止(某事物); (用水)扑灭(火焰等); 将(热物体)放入水中急速冷却
参考例句:
  • Water afar quenches not fire. 远水解不了近渴。
  • Daylight quenches the candles and the birds begin to sing. 日光压倒了烛光,小鸟开始歌唱。
93 recoil GA4zL     
vi.退却,退缩,畏缩
参考例句:
  • Most people would recoil at the sight of the snake.许多人看见蛇都会向后退缩。
  • Revenge may recoil upon the person who takes it.报复者常会受到报应。
94 scanty ZDPzx     
adj.缺乏的,仅有的,节省的,狭小的,不够的
参考例句:
  • There is scanty evidence to support their accusations.他们的指控证据不足。
  • The rainfall was rather scanty this month.这个月的雨量不足。
95 portents ee8e35db53fcfe0128c4cd91fdd2f0f8     
n.预兆( portent的名词复数 );征兆;怪事;奇物
参考例句:
  • But even with this extra support, labour-market portents still look grim. 但是即使采取了额外支持措施,劳动力市场依然阴霾密布。 来自互联网
  • So the hiccups are worth noting as portents. 因此这些问题作为不好的征兆而值得关注。 来自互联网
96 catastrophe WXHzr     
n.大灾难,大祸
参考例句:
  • I owe it to you that I survived the catastrophe.亏得你我才大难不死。
  • This is a catastrophe beyond human control.这是一场人类无法控制的灾难。
97 descended guQzoy     
a.为...后裔的,出身于...的
参考例句:
  • A mood of melancholy descended on us. 一种悲伤的情绪袭上我们的心头。
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
98 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
99 torrents 0212faa02662ca7703af165c0976cdfd     
n.倾注;奔流( torrent的名词复数 );急流;爆发;连续不断
参考例句:
  • The torrents scoured out a channel down the hill side. 急流沿着山腰冲刷出一条水沟。 来自《现代汉英综合大词典》
  • Sudden rainstorms would bring the mountain torrents rushing down. 突然的暴雨会使山洪暴发。 来自《现代汉英综合大词典》
100 investigation MRKzq     
n.调查,调查研究
参考例句:
  • In an investigation,a new fact became known, which told against him.在调查中新发现了一件对他不利的事实。
  • He drew the conclusion by building on his own investigation.他根据自己的调查研究作出结论。
101 vessel 4L1zi     
n.船舶;容器,器皿;管,导管,血管
参考例句:
  • The vessel is fully loaded with cargo for Shanghai.这艘船满载货物驶往上海。
  • You should put the water into a vessel.你应该把水装入容器中。
102 analogous aLdyQ     
adj.相似的;类似的
参考例句:
  • The two situations are roughly analogous.两种情況大致相似。
  • The company is in a position closely analogous to that of its main rival.该公司与主要竞争对手的处境极为相似。
103 perennial i3bz7     
adj.终年的;长久的
参考例句:
  • I wonder at her perennial youthfulness.我对她青春常驻感到惊讶。
  • There's a perennial shortage of teachers with science qualifications.有理科教学资格的老师一直都很短缺。
104 unreasonable tjLwm     
adj.不讲道理的,不合情理的,过度的
参考例句:
  • I know that they made the most unreasonable demands on you.我知道他们对你提出了最不合理的要求。
  • They spend an unreasonable amount of money on clothes.他们花在衣服上的钱太多了。
105 trickles 90ffecf5836b69570298d5fc11cddea9     
n.细流( trickle的名词复数 );稀稀疏疏缓慢来往的东西v.滴( trickle的第三人称单数 );淌;使)慢慢走;缓慢移动
参考例句:
  • Trickles of sweat rained down my head and neck. 我颈上头上的汗珠,更同盛雨似的,一颗一颗的钻出来了。 来自汉英文学 - 中国现代小说
  • Water trickles through an underground grotto. 水沿着地下岩洞流淌。 来自辞典例句
106 trickle zm2w8     
vi.淌,滴,流出,慢慢移动,逐渐消散
参考例句:
  • The stream has thinned down to a mere trickle.这条小河变成细流了。
  • The flood of cars has now slowed to a trickle.汹涌的车流现在已经变得稀稀拉拉。
107 saturated qjEzG3     
a.饱和的,充满的
参考例句:
  • The continuous rain had saturated the soil. 连绵不断的雨把土地淋了个透。
  • a saturated solution of sodium chloride 氯化钠饱和溶液
108 ooze 7v2y3     
n.软泥,渗出物;vi.渗出,泄漏;vt.慢慢渗出,流露
参考例句:
  • Soon layer of oceanic ooze began to accumulate above the old hard layer.不久后海洋软泥层开始在老的硬地层上堆积。
  • Drip or ooze systems are common for pot watering.滴灌和渗灌系统一般也用于盆栽灌水。
109 itineraries ea7fc6173314bb82d2fae58bab9350e3     
n.旅程,行程( itinerary的名词复数 )
参考例句:
  • Submit weekly status reports and monthly itineraries to Region Vice President. 每周递交工作报告,每月递交工作计划给总经理。 来自互联网
  • Big Ticket ItemsBig Savings-Complex international itineraries can offer opportunities for significant savings. 复杂线路节省更多:复杂的国际航线其实有更多的省钱机会。 来自互联网
110 dwellers e3f4717dcbd471afe8dae6a3121a3602     
n.居民,居住者( dweller的名词复数 )
参考例句:
  • City dwellers think country folk have provincial attitudes. 城里人以为乡下人思想迂腐。 来自《简明英汉词典》
  • They have transformed themselves into permanent city dwellers. 他们已成为永久的城市居民。 来自《简明英汉词典》
111 fabulous ch6zI     
adj.极好的;极为巨大的;寓言中的,传说中的
参考例句:
  • We had a fabulous time at the party.我们在晚会上玩得很痛快。
  • This is a fabulous sum of money.这是一笔巨款。
112 marshes 9fb6b97bc2685c7033fce33dc84acded     
n.沼泽,湿地( marsh的名词复数 )
参考例句:
  • Cows were grazing on the marshes. 牛群在湿地上吃草。
  • We had to cross the marshes. 我们不得不穿过那片沼泽地。 来自《简明英汉词典》
113 secondly cjazXx     
adv.第二,其次
参考例句:
  • Secondly,use your own head and present your point of view.第二,动脑筋提出自己的见解。
  • Secondly it is necessary to define the applied load.其次,需要确定所作用的载荷。
114 percolation 766e454de7819792a2c54a57104a44d4     
n.过滤,浸透;渗滤;渗漏
参考例句:
  • This corresponds to the percolation phase of the drying mechanism. 这相当于干化机理的渗滤阶段。 来自辞典例句
  • The percolation clusters with various occupying probability are constructed. 构造了具有不同占据概率的逾渗集团。 来自互联网
115 outlet ZJFxG     
n.出口/路;销路;批发商店;通风口;发泄
参考例句:
  • The outlet of a water pipe was blocked.水管的出水口堵住了。
  • Running is a good outlet for his energy.跑步是他发泄过剩精力的好方法。
116 silting 29e58c7c11dd83eef776c88a8b7bc23b     
n.淤积,淤塞,充填v.(河流等)为淤泥淤塞( silt的现在分词 );(使)淤塞
参考例句:
  • Mud is silting up the stream. 泥沙把小河淤塞了。 来自《简明英汉词典》
  • The harbour is slowly silting up. 港口正在慢慢地被淤泥堵塞。 来自互联网
117 silt tEHyA     
n.淤泥,淤沙,粉砂层,泥沙层;vt.使淤塞;vi.被淤塞
参考例句:
  • The lake was almost solid with silt and vegetation.湖里几乎快被淤泥和植物填满了。
  • During the annual floods the river deposits its silt on the fields.每年河水泛滥时都会在田野上沉积一层淤泥。
118 pestilence YlGzsG     
n.瘟疫
参考例句:
  • They were crazed by the famine and pestilence of that bitter winter.他们因那年严冬的饥饿与瘟疫而折磨得发狂。
  • A pestilence was raging in that area. 瘟疫正在那一地区流行。
119 disappearance ouEx5     
n.消失,消散,失踪
参考例句:
  • He was hard put to it to explain her disappearance.他难以说明她为什么不见了。
  • Her disappearance gave rise to the wildest rumours.她失踪一事引起了各种流言蜚语。
120 lapse t2lxL     
n.过失,流逝,失效,抛弃信仰,间隔;vi.堕落,停止,失效,流逝;vt.使失效
参考例句:
  • The incident was being seen as a serious security lapse.这一事故被看作是一次严重的安全疏忽。
  • I had a lapse of memory.我记错了。
121 formerly ni3x9     
adv.从前,以前
参考例句:
  • We now enjoy these comforts of which formerly we had only heard.我们现在享受到了过去只是听说过的那些舒适条件。
  • This boat was formerly used on the rivers of China.这船从前航行在中国内河里。
122 deteriorate Zm8zW     
v.变坏;恶化;退化
参考例句:
  • Do you think relations between China and Japan will continue to deteriorate?你认为中日关系会继续恶化吗?
  • He held that this would only cause the situation to deteriorate further.他认为,这只会使局势更加恶化。
123 partially yL7xm     
adv.部分地,从某些方面讲
参考例句:
  • The door was partially concealed by the drapes.门有一部分被门帘遮住了。
  • The police managed to restore calm and the curfew was partially lifted.警方设法恢复了平静,宵禁部分解除。
124 trifling SJwzX     
adj.微不足道的;没什么价值的
参考例句:
  • They quarreled over a trifling matter.他们为这种微不足道的事情争吵。
  • So far Europe has no doubt, gained a real conveniency,though surely a very trifling one.直到现在为止,欧洲无疑地已经获得了实在的便利,不过那确是一种微不足道的便利。
125 deluge a9nyg     
n./vt.洪水,暴雨,使泛滥
参考例句:
  • This little stream can become a deluge when it rains heavily.雨大的时候,这条小溪能变作洪流。
  • I got caught in the deluge on the way home.我在回家的路上遇到倾盆大雨。
126 density rOdzZ     
n.密集,密度,浓度
参考例句:
  • The population density of that country is 685 per square mile.那个国家的人口密度为每平方英里685人。
  • The region has a very high population density.该地区的人口密度很高。
127 stony qu1wX     
adj.石头的,多石头的,冷酷的,无情的
参考例句:
  • The ground is too dry and stony.这块地太干,而且布满了石头。
  • He listened to her story with a stony expression.他带着冷漠的表情听她讲经历。
128 everlasting Insx7     
adj.永恒的,持久的,无止境的
参考例句:
  • These tyres are advertised as being everlasting.广告上说轮胎持久耐用。
  • He believes in everlasting life after death.他相信死后有不朽的生命。
129 entirely entirely     
ad.全部地,完整地;完全地,彻底地
参考例句:
  • The fire was entirely caused by their neglect of duty. 那场火灾完全是由于他们失职而引起的。
  • His life was entirely given up to the educational work. 他的一生统统献给了教育工作。
130 receding c22972dfbef8589fece6affb72f431d1     
v.逐渐远离( recede的现在分词 );向后倾斜;自原处后退或避开别人的注视;尤指问题
参考例句:
  • Desperately he struck out after the receding lights of the yacht. 游艇的灯光渐去渐远,他拼命划水追赶。 来自辞典例句
  • Sounds produced by vehicles receding from us seem lower-pitched than usual. 渐渐远离我们的运载工具发出的声似乎比平常的音调低。 来自辞典例句


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533