WE have already discussed the first causes of nature, and all natural motion, also the stars ordered in the motion of the heavens, and the physical element-enumerating and specifying1 them and showing how they change into one another-and becoming and perishing in general. There remains2 for consideration a part of this inquiry3 which all our predecessors4 called meteorology. It is concerned with events that are natural, though their order is less perfect than that of the first of the elements of bodies. They take place in the region nearest to the motion of the stars. Such are the milky5 way, and comets, and the movements of meteors. It studies also all the affections we may call common to air and water, and the kinds and parts of the earth and the affections of its parts. These throw light on the causes of winds and earthquakes and all the consequences the motions of these kinds and parts involve. Of these things some puzzle us, while others admit of explanation in some degree. Further, the inquiry is concerned with the falling of thunderbolts and with whirlwinds and fire-winds, and further, the recurrent affections produced in these same bodies by concretion. When the inquiry into these matters is concluded let us consider what account we can give, in accordance with the method we have followed, of animals and plants, both generally and in detail. When that has been done we may say that the whole of our original undertaking6 will have been carried out.
After this introduction let us begin by discussing our immediate8 subject.
2
We have already laid down that there is one physical element which makes up the system of the bodies that move in a circle, and besides this four bodies owing their existence to the four principles, the motion of these latter bodies being of two kinds: either from the centre or to the centre. These four bodies are fire, air, water, earth. Fire occupies the highest place among them all, earth the lowest, and two elements correspond to these in their relation to one another, air being nearest to fire, water to earth. The whole world surrounding the earth, then, the affections of which are our subject, is made up of these bodies. This world necessarily has a certain continuity with the upper motions: consequently all its power and order is derived9 from them. (For the originating principle of all motion is the first cause. Besides, that clement11 is eternal and its motion has no limit in space, but is always complete; whereas all these other bodies have separate regions which limit one another.) So we must treat fire and earth and the elements like them as the material causes of the events in this world (meaning by material what is subject and is affected12), but must assign causality in the sense of the originating principle of motion to the influence of the eternally moving bodies.
3
Let us first recall our original principles and the distinctions already drawn13 and then explain the ‘milky way’ and comets and the other phenomena14 akin7 to these.
Fire, air, water, earth, we assert, originate from one another, and each of them exists potentially in each, as all things do that can be resolved into a common and ultimate substrate.
The first difficulty is raised by what is called the air. What are we to take its nature to be in the world surrounding the earth? And what is its position relatively15 to the other physical elements. (For there is no question as to the relation of the bulk of the earth to the size of the bodies which exist around it, since astronomical16 demonstrations17 have by this time proved to us that it is actually far smaller than some individual stars. As for the water, it is not observed to exist collectively and separately, nor can it do so apart from that volume of it which has its seat about the earth: the sea, that is, and rivers, which we can see, and any subterranean18 water that may be hidden from our observation.) The question is really about that which lies between the earth and the nearest stars. Are we to consider it to be one kind of body or more than one? And if more than one, how many are there and what are the bounds of their regions?
We have already described and characterized the first element, and explained that the whole world of the upper motions is full of that body.
This is an opinion we are not alone in holding: it appears to be an old assumption and one which men have held in the past, for the word ether has long been used to denote that element. Anaxagoras, it is true, seems to me to think that the word means the same as fire. For he thought that the upper regions were full of fire, and that men referred to those regions when they spoke19 of ether. In the latter point he was right, for men seem to have assumed that a body that was eternally in motion was also divine in nature; and, as such a body was different from any of the terrestrial elements, they determined20 to call it ‘ether’.
For the um opinions appear in cycles among men not once nor twice, but infinitely21 often.
Now there are some who maintain that not only the bodies in motion but that which contains them is pure fire, and the interval22 between the earth and the stars air: but if they had considered what is now satisfactorily established by mathematics, they might have given up this puerile23 opinion. For it is altogether childish to suppose that the moving bodies are all of them of a small size, because they so to us, looking at them from the earth.
This a matter which we have already discussed in our treatment of the upper region, but we may return to the point now.
If the intervals24 were full of fire and the bodies consisted of fire every one of the other elements would long ago have vanished.
However, they cannot simply be said to be full of air either; for even if there were two elements to fill the space between the earth and the heavens, the air would far exceed the quantitu required to maintain its proper proportion to the other elements. For the bulk of the earth (which includes the whole volume of water) is infinitesimal in comparison with the whole world that surrounds it. Now we find that the excess in volume is not proportionately great where water dissolves into air or air into fire. Whereas the proportion between any given small quantity of water and the air that is generated from it ought to hold good between the total amount of air and the total amount of water. Nor does it make any difference if any one denies that the elements originate from one another, but asserts that they are equal in power. For on this view it is certain amounts of each that are equal in power, just as would be the case if they actually originated from one another.
So it is clear that neither air nor fire alone fills the intermediate space.
It remains to explain, after a preliminary discussion of difficulties, the relation of the two elements air and fire to the position of the first element, and the reason why the stars in the upper region impart heat to the earth and its neighbourhood. Let us first treat of the air, as we proposed, and then go on to these questions.
Since water is generated from air, and air from water, why are clouds not formed in the upper air? They ought to form there the more, the further from the earth and the colder that region is. For it is neither appreciably25 near to the heat of the stars, nor to the rays relected from the earth. It is these that dissolve any formation by their heat and so prevent clouds from forming near the earth. For clouds gather at the point where the reflected rays disperse26 in the infinity27 of space and are lost. To explain this we must suppose either that it is not all air which water is generated, or, if it is produced from all air alike, that what immediately surrounds the earth is not mere28 air, but a sort of vapour, and that its vaporous nature is the reason why it condenses back to water again. But if the whole of that vast region is vapour, the amount of air and of water will be disproportionately great. For the spaces left by the heavenly bodies must be filled by some element. This cannot be fire, for then all the rest would have been dried up. Consequently, what fills it must be air and the water that surrounds the whole earth-vapour being water dissolved.
After this exposition of the difficulties involved, let us go on to lay down the truth, with a view at once to what follows and to what has already been said. The upper region as far as the moon we affirm to consist of a body distinct both from fire and from air, but varying degree of purity and in kind, especially towards its limit on the side of the air, and of the world surrounding the earth. Now the circular motion of the first element and of the bodies it contains dissolves, and inflames31 by its motion, whatever part of the lower world is nearest to it, and so generates heat. From another point of view we may look at the motion as follows. The body that lies below the circular motion of the heavens is, in a sort, matter, and is potentially hot, cold, dry, moist, and possessed33 of whatever other qualities are derived from these. But it actually acquires or retains one of these in virtue34 of motion or rest, the cause and principle of which has already been explained. So at the centre and round it we get earth and water, the heaviest and coldest elements, by themselves; round them and contiguous with them, air and what we commonly call fire. It is not really fire, for fire is an excess of heat and a sort of ebullition; but in reality, of what we call air, the part surrounding the earth is moist and warm, because it contains both vapour and a dry exhalation from the earth. But the next part, above that, is warm and dry. For vapour is naturally moist and cold, but the exhalation warm and dry; and vapour is potentially like water, the exhalation potentially like fire. So we must take the reason why clouds are not formed in the upper region to be this: that it is filled not with mere air but rather with a sort of fire.
However, it may well be that the formation of clouds in that upper region is also prevented by the circular motion. For the air round the earth is necessarily all of it in motion, except that which is cut off inside the circumference35 which makes the earth a complete sphere. In the case of winds it is actually observable that they originate in marshy36 districts of the earth; and they do not seem to blow above the level of the highest mountains. It is the revolution of the heaven which carries the air with it and causes its circular motion, fire being continuous with the upper element and air with fire. Thus its motion is a second reason why that air is not condensed into water.
But whenever a particle of air grows heavy, the warmth in it is squeezed out into the upper region and it sinks, and other particles in turn are carried up together with the fiery37 exhalation. Thus the one region is always full of air and the other of fire, and each of them is perpetually in a state of change.
So much to explain why clouds are not formed and why the air is not condensed into water, and what account must be given of the space between the stars and the earth, and what is the body that fills it.
As for the heat derived from the sun, the right place for a special and scientific account of it is in the treatise38 about sense, since heat is an affection of sense, but we may now explain how it can be produced by the heavenly bodies which are not themselves hot.
We see that motion is able to dissolve and inflame32 the air; indeed, moving bodies are often actually found to melt. Now the sun’s motion alone is sufficient to account for the origin of terrestrial warmth and heat. For a motion that is to have this effect must be rapid and near, and that of the stars is rapid but distant, while that of the moon is near but slow, whereas the sun’s motion combines both conditions in a sufficient degree. That most heat should be generated where the sun is present is easy to understand if we consider the analogy of terrestrial phenomena, for here, too, it is the air that is nearest to a thing in rapid motion which is heated most. This is just what we should expect, as it is the nearest air that is most dissolved by the motion of a solid body.
This then is one reason why heat reaches our world. Another is that the fire surrounding the air is often scattered39 by the motion of the heavens and driven downwards40 in spite of itself.
Shooting-stars further suffix41 to prove that the celestial42 sphere is not hot or fiery: for they do not occur in that upper region but below: yet the more and the faster a thing moves, the more apt it is to take fire. Besides, the sun, which most of all the stars is considered to be hot, is really white and not fiery in colour.
4
Having determined these principles let us explain the cause of the appearance in the sky of burning flames and of shooting-stars, and of ‘torches’, and ‘goats’, as some people call them. All these phenomena are one and the same thing, and are due to the same cause, the difference between them being one of degree.
The explanation of these and many other phenomena is this. When the sun warms the earth the evaporation43 which takes place is necessarily of two kinds, not of one only as some think. One kind is rather of the nature of vapour, the other of the nature of a windy exhalation. That which rises from the moisture contained in the earth and on its surface is vapour, while that rising from the earth itself, which is dry, is like smoke. Of these the windy exhalation, being warm, rises above the moister vapour, which is heavy and sinks below the other. Hence the world surrounding the earth is ordered as follows. First below the circular motion comes the warm and dry element, which we call fire, for there is no word fully44 adequate to every state of the fumid evaporation: but we must use this terminology45 since this element is the most inflammable of all bodies. Below this comes air. We must think of what we just called fire as being spread round the terrestrial sphere on the outside like a kind of fuel, so that a little motion often makes it burst into flame just as smoke does: for flame is the ebullition of a dry exhalation. So whenever the circular motion stirs this stuff up in any way, it catches fire at the point at which it is most inflammable. The result differs according to the disposition46 and quantity of the combustible47 material. If this is broad and long, we often see a flame burning as in a field of stubble: if it burns lengthwise only, we see what are called ‘torches’ and ‘goats’ and shooting-stars. Now when the inflammable material is longer than it is broad sometimes it seems to throw off sparks as it burns. (This happens because matter catches fire at the sides in small portions but continuously with the main body.) Then it is called a ‘goat’. When this does not happen it is a ‘torch’. But if the whole length of the exhalation is scattered in small parts and in many directions and in breadth and depth alike, we get what are called shooting-stars.
The cause of these shooting-stars is sometimes the motion which ignites the exhalation. At other times the air is condensed by cold and squeezes out and ejects the hot element; making their motion look more like that of a thing thrown than like a running fire. For the question might be raised whether the ‘shooting’ of a ‘star’ is the same thing as when you put an exhalation below a lamp and it lights the lower lamp from the flame above. For here too the flame passes wonderfully quickly and looks like a thing thrown, and not as if one thing after another caught fire. Or is a ‘star’ when it ‘shoots’ a single body that is thrown? Apparently48 both cases occur: sometimes it is like the flame from the lamp and sometimes bodies are projected by being squeezed out (like fruit stones from one’s fingers) and so are seen to fall into the sea and on the dry land, both by night and by day when the sky is clear. They are thrown downwards because the condensation49 which propels them inclines downwards. Thunderbolts fall downwards for the same reason: their origin is never combustion50 but ejection under pressure, since naturally all heat tends upwards51.
When the phenomenon is formed in the upper region it is due to the combustion of the exhalation. When it takes place at a lower level it is due to the ejection of the exhalation by the condensing and cooling of the moister evaporation: for this latter as it condenses and inclines downward contracts, and thrusts out the hot element and causes it to be thrown downwards. The motion is upwards or downwards or sideways according to the way in which the evaporation lies, and its disposition in respect of breadth and depth. In most cases the direction is sideways because two motions are involved, a compulsory52 motion downwards and a natural motion upwards, and under these circumstances an object always moves obliquely53. Hence the motion of ‘shooting-stars’ is generally oblique54.
So the material cause of all these phenomena is the exhalation, the efficient cause sometimes the upper motion, sometimes the contraction55 and condensation of the air. Further, all these things happen below the moon. This is shown by their apparent speed, which is equal to that of things thrown by us; for it is because they are close to us, that these latter seem far to exceed in speed the stars, the sun, and the moon.
5
Sometimes on a fine night we see a variety of appearances that form in the sky: ‘chasms56’ for instance and ‘trenches57’ and blood-red colours. These, too, have the same cause. For we have seen that the upper air condenses into an inflammable condition and that the combustion sometimes takes on the appearance of a burning flame, sometimes that of moving torches and stars. So it is not surprising that this same air when condensing should assume a variety of colours. For a weak light shining through a dense30 air, and the air when it acts as a mirror, will cause all kinds of colours to appear, but especially crimson58 and purple. For these colours generally appear when fire-colour and white are combined by superposition. Thus on a hot day, or through a smoky, medium, the stars when they rise and set look crimson. The light will also create colours by reflection when the mirror is such as to reflect colour only and not shape.
These appearances do not persist long, because the condensation of the air is transient.
‘Chasms’ get their appearance of depth from light breaking out of a dark blue or black mass of air. When the process of condensation goes further in such a case we often find ‘torches’ ejected. When the ‘chasm’ contracts it presents the appearance of a ‘trench’.
In general, white in contrast with black creates a variety of colours; like flame, for instance, through a medium of smoke. But by day the sun obscures them, and, with the exception of crimson, the colours are not seen at night because they are dark.
These then must be taken to be the causes of ‘shooting-stars’ and the phenomena of combustion and also of the other transient appearances of this kind.
6
Let us go on to explain the nature of comets and the ‘milky way’, after a preliminary discussion of the views of others.
Anaxagoras and Democritus declare that comets are a conjunction of the planets approaching one another and so appearing to touch one another.
Some of the Italians called Pythagoreans say that the comet is one of the planets, but that it appears at great intervals of time and only rises a little above the horizon. This is the case with Mercury too; because it only rises a little above the horizon it often fails to be seen and consequently appears at great intervals of time.
A view like theirs was also expressed by Hippocrates of Chios and his pupil Aeschylus. Only they say that the tail does not belong to the comet iself, but is occasionally assumed by it on its course in certain situations, when our sight is reflected to the sun from the moisture attracted by the comet. It appears at greater intervals than the other stars because it is slowest to get clear of the sun and has been left behind by the sun to the extent of the whole of its circle before it reappears at the same point. It gets clear of the sun both towards the north and towards the south. In the space between the tropics it does not draw water to itself because that region is dried up by the sun on its course. When it moves towards the south it has no lack of the necessary moisture, but because the segment of its circle which is above the horizon is small, and that below it many times as large, it is impossible for the sun to be reflected to our sight, either when it approaches the southern tropic, or at the summer solstice. Hence in these regions it does not develop a tail at all. But when it is visible in the north it assumes a tail because the arc above the horizon is large and that below it small. For under these circumstances there is nothing to prevent our vision from being reflected to the sun.
These views involve impossibilities, some of which are common to all of them, while others are peculiar59 to some only.
This is the case, first, with those who say that the comet is one of the planets. For all the planets appear in the circle of the zodiac, whereas many comets have been seen outside that circle. Again more comets than one have often appeared simultaneously60. Besides, if their tail is due to reflection, as Aeschylus and Hippocrates say, this planet ought sometimes to be visible without a tail since, as they it does not possess a tail in every place in which it appears. But, as a matter of fact, no planet has been observed besides the five. And all of them are often visible above the horizon together at the same time. Further, comets are often found to appear, as well when all the planets are visible as when some are not, but are obscured by the neighbourhood of the sun. Moreover the statement that a comet only appears in the north, with the sun at the summer solstice, is not true either. The great comet which appeared at the time of the earthquake in Achaea and the tidal wave rose due west; and many have been known to appear in the south. Again in the archonship of Euclees, son of Molon, at Athens there appeared a comet in the north in the month Gamelion, the sun being about the winter solstice. Yet they themselves admit that reflection over so great a space is an impossibility.
An objection that tells equally against those who hold this theory and those who say that comets are a coalescence61 of the planets is, first, the fact that some of the fixed63 stars too get a tail. For this we must not only accept the authority of the Egyptians who assert it, but we have ourselves observed the fact. For a star in the thigh64 of the Dog had a tail, though a faint one. If you fixed your sight on it its light was dim, but if you just glanced at it, it appeared brighter. Besides, all the comets that have been seen in our day have vanished without setting, gradually fading away above the horizon; and they have not left behind them either one or more stars. For instance the great comet we mentioned before appeared to the west in winter in frosty weather when the sky was clear, in the archonship of Asteius. On the first day it set before the sun and was then not seen. On the next day it was seen, being ever so little behind the sun and immediately setting. But its light extended over a third part of the sky like a leap, so that people called it a ‘path’. This comet receded65 as far as Orion’s belt and there dissolved. Democritus however, insists upon the truth of his view and affirms that certain stars have been seen when comets dissolve. But on his theory this ought not to occur occasionally but always. Besides, the Egyptians affirm that conjunctions of the planets with one another, and with the fixed stars, take place, and we have ourselves observed Jupiter coinciding with one of the stars in the Twins and hiding it, and yet no comet was formed. Further, we can also give a rational proof of our point. It is true that some stars seem to be bigger than others, yet each one by itself looks indivisible. Consequently, just as, if they really had been indivisible, their conjunction could not have created any greater magnitude, so now that they are not in fact indivisible but look as if they were, their conjunction will not make them look any bigger.
Enough has been said, without further argument, to show that the causes brought forward to explain comets are false.
7
We consider a satisfactory explanation of phenomena inaccessible66 to observation to have been given when our account of them is free from impossibilities. The observations before us suggest the following account of the phenomena we are now considering. We know that the dry and warm exhalation is the outermost67 part of the terrestrial world which falls below the circular motion. It, and a great part of the air that is continuous with it below, is carried round the earth by the motion of the circular revolution. In the course of this motion it often ignites wherever it may happen to be of the right consistency68, and this we maintain to be the cause of the ‘shooting’ of scattered ‘stars’. We may say, then, that a comet is formed when the upper motion introduces into a gathering69 of this kind a fiery principle not of such excessive strength as to burn up much of the material quickly, nor so weak as soon to be extinguished, but stronger and capable of burning up much material, and when exhalation of the right consistency rises from below and meets it. The kind of comet varies according to the shape which the exhalation happens to take. If it is diffused70 equally on every side the star is said to be fringed, if it stretches out in one direction it is called bearded. We have seen that when a fiery principle of this kind moves we seem to have a shooting-star: similarly when it stands still we seem to have a star standing71 still. We may compare these phenomena to a heap or mass of chaff72 into which a torch is thrust, or a spark thrown. That is what a shooting-star is like. The fuel is so inflammable that the fire runs through it quickly in a line. Now if this fire were to persist instead of running through the fuel and perishing away, its course through the fuel would stop at the point where the latter was densest73, and then the whole might begin to move. Such is a comet-like a shooting-star that contains its beginning and end in itself.
When the matter begins to gather in the lower region independently the comet appears by itself. But when the exhalation is constituted by one of the fixed stars or the planets, owing to their motion, one of them becomes a comet. The fringe is not close to the stars themselves. Just as haloes appear to follow the sun and the moon as they move, and encircle them, when the air is dense enough for them to form along under the sun’s course, so too the fringe. It stands in the relation of a halo to the stars, except that the colour of the halo is due to reflection, whereas in the case of comets the colour is something that appears actually on them.
Now when this matter gathers in relation to a star the comet necessarily appears to follow the same course as the star. But when the comet is formed independently it falls behind the motion of the universe, like the rest of the terrestrial world. It is this fact, that a comet often forms independently, indeed oftener than round one of the regular stars, that makes it impossible to maintain that a comet is a sort of reflection, not indeed, as Hippocrates and his school say, to the sun, but to the very star it is alleged74 to accompany-in fact, a kind of halo in the pure fuel of fire.
As for the halo we shall explain its cause later.
The fact that comets when frequent foreshadow wind and drought must be taken as an indication of their fiery constitution. For their origin is plainly due to the plentiful75 supply of that secretion76. Hence the air is necessarily drier and the moist evaporation is so dissolved and dissipated by the quantity of the hot exhalation as not readily to condense into water.-But this phenomenon too shall be explained more clearly later when the time comes to speak of the winds.-So when there are many comets and they are dense, it is as we say, and the years are clearly dry and windy. When they are fewer and fainter this effect does not appear in the same degree, though as a rule the is found to be excessive either in duration or strength. For instance when the stone at Aegospotami fell out of the air-it had been carried up by a wind and fell down in the daytime-then too a comet happened to have appeared in the west. And at the time of the great comet the winter was dry and north winds prevailed, and the wave was due to an opposition77 of winds. For in the gulf78 a north wind blew and outside it a violent south wind. Again in the archonship of Nicomachus a comet appeared for a few days about the equinoctial circle (this one had not risen in the west), and simultaneously with it there happened the storm at Corinth.
That there are few comets and that they appear rarely and outside the tropic circles more than within them is due to the motion of the sun and the stars. For this motion does not only cause the hot principle to be secreted79 but also dissolves it when it is gathering. But the chief reason is that most of this stuff collects in the region of the milky way.
8
Let us now explain the origin, cause, and nature of the milky way. And here too let us begin by discussing the statements of others on the subject.
(1) Of the so-called Pythagoreans some say that this is the path of one of the stars that fell from heaven at the time of Phaethon’s downfall. Others say that the sun used once to move in this circle and that this region was scorched80 or met with some other affection of this kind, because of the sun and its motion.
But it is absurd not to see that if this were the reason the circle of the Zodiac ought to be affected in the same way, and indeed more so than that of the milky way, since not the sun only but all the planets move in it. We can see the whole of this circle (half of it being visible at any time of the night), but it shows no signs of any such affection except where a part of it touches the circle of the milky way.
(2) Anaxagoras, Democritus, and their schools say that the milky way is the light of certain stars. For, they say, when the sun passes below the earth some of the stars are hidden from it. Now the light of those on which the sun shines is invisible, being obscured by the of the sun. But the milky way is the peculiar light of those stars which are shaded by the earth from the sun’s rays.
This, too, is obviously impossible. The milky way is always unchanged and among the same constellations81 (for it is clearly a greatest circle), whereas, since the sun does not remain in the same place, what is hidden from it differs at different times. Consequently with the change of the sun’s position the milky way ought to change its position too: but we find that this does not happen. Besides, if astronomical demonstrations are correct and the size of the sun is greater than that of the earth and the distance of the stars from the earth many times greater than that of the sun (just as the sun is further from the earth than the moon), then the cone82 made by the rays of the sun would terminate at no great distance from the earth, and the shadow of the earth (what we call night) would not reach the stars. On the contrary, the sun shines on all the stars and the earth screens none of them.
(3) There is a third theory about the milky way. Some say that it is a reflection of our sight to the sun, just as they say that the comet is.
But this too is impossible. For if the eye and the mirror and the whole of the object were severally at rest, then the same part of the image would appear at the same point in the mirror. But if the mirror and the object move, keeping the same distance from the eye which is at rest, but at different rates of speed and so not always at the same interval from one another, then it is impossible for the same image always to appear in the same part of the mirror. Now the constellations included in the circle of the milky way move; and so does the sun, the object to which our sight is reflected; but we stand still. And the distance of those two from us is constant and uniform, but their distance from one another varies. For the Dolphin sometimes rises at midnight, sometimes in the morning. But in each case the same parts of the milky way are found near it. But if it were a reflection and not a genuine affection of these this ought not to be the case.
Again, we can see the milky way reflected at night in water and similar mirrors. But under these circumstances it is impossible for our sight to be reflected to the sun.
These considerations show that the milky way is not the path of one of the planets, nor the light of imperceptible stars, nor a reflection. And those are the chief theories handed down by others hitherto.
Let us recall our fundamental principle and then explain our views. We have already laid down that the outermost part of what is called the air is potentially fire and that therefore when the air is dissolved by motion, there is separated off a kind of matter-and of this matter we assert that comets consist. We must suppose that what happens is the same as in the case of the comets when the matter does not form independently but is formed by one of the fixed stars or the planets. Then these stars appear to be fringed, because matter of this kind follows their course. In the same way, a certain kind of matter follows the sun, and we explain the halo as a reflection from it when the air is of the right constitution. Now we must assume that what happens in the case of the stars severally happens in the case of the whole of the heavens and all the upper motion. For it is natural to suppose that, if the motion of a single star excites a flame, that of all the stars should have a similar result, and especially in that region in which the stars are biggest and most numerous and nearest to one another. Now the circle of the zodiac dissolves this kind of matter because of the motion of the sun and the planets, and for this reason most comets are found outside the tropic circles. Again, no fringe appears round the sun or moon: for they dissolve such matter too quickly to admit of its formation. But this circle in which the milky way appears to our sight is the greatest circle, and its position is such that it extends far outside the tropic circles. Besides the region is full of the biggest and brightest constellations and also of what called ‘scattered’ stars (you have only to look to see this clearly). So for these reasons all this matter is continually and ceaselessly collecting there. A proof of the theory is this: In the circle itself the light is stronger in that half where the milky way is divided, and in it the constellations are more numerous and closer to one another than in the other half; which shows that the cause of the light is the motion of the constellations and nothing else. For if it is found in the circle in which there are most constellations and at that point in the circle at which they are densest and contain the biggest and the most stars, it is natural to suppose that they are the true cause of the affection in question. The circle and the constellations in it may be seen in the diagram. The so-called ‘scattered’ stars it is not possible to set down in the same way on the sphere because none of them have an evident permanent position; but if you look up to the sky the point is clear. For in this circle alone are the intervals full of these stars: in the other circles there are obvious gaps. Hence if we accept the cause assigned for the appearance of comets as plausible83 we must assume that the same kind of thing holds good of the milky way. For the fringe which in the former case is an affection of a single star here forms in the same way in relation to a whole circle. So if we are to define the milky way we may call it ‘a fringe attaching to the greatest circle, and due to the matter secreted’. This, as we said before, explains why there are few comets and why they appear rarely; it is because at each revolution of the heavens this matter has always been and is always being separated off and gathered into this region.
We have now explained the phenomena that occur in that part of the terrestrial world which is continuous with the motions of the heavens, namely, shooting-stars and the burning flame, comets and the milky way, these being the chief affections that appear in that region.
9
Let us go on to treat of the region which follows next in order after this and which immediately surrounds the earth. It is the region common to water and air, and the processes attending the formation of water above take place in it. We must consider the principles and causes of all these phenomena too as before. The efficient and chief and first cause is the circle in which the sun moves. For the sun as it approaches or recedes84, obviously causes dissipation and condensation and so gives rise to generation and destruction. Now the earth remains but the moisture surrounding it is made to evaporate by the sun’s rays and the other heat from above, and rises. But when the heat which was raising it leaves it, in part dispersing85 to the higher region, in part quenched86 through rising so far into the upper air, then the vapour cools because its heat is gone and because the place is cold, and condenses again and turns from air into water. And after the water has formed it falls down again to the earth.
The exhalation of water is vapour: air condensing into water is cloud. Mist is what is left over when a cloud condenses into water, and is therefore rather a sign of fine weather than of rain; for mist might be called a barren cloud. So we get a circular process that follows the course of the sun. For according as the sun moves to this side or that, the moisture in this process rises or falls. We must think of it as a river flowing up and down in a circle and made up partly of air, partly of water. When the sun is near, the stream of vapour flows upwards; when it recedes, the stream of water flows down: and the order of sequence, at all events, in this process always remains the same. So if ‘Oceanus’ had some secret meaning in early writers, perhaps they may have meant this river that flows in a circle about the earth.
So the moisture is always raised by the heat and descends88 to the earth again when it gets cold. These processes and, in some cases, their varieties are distinguished89 by special names. When the water falls in small drops it is called a drizzle90; when the drops are larger it is rain.
10
Some of the vapour that is formed by day does not rise high because the ratio of the fire that is raising it to the water that is being raised is small. When this cools and descends at night it is called dew and hoar-frost. When the vapour is frozen before it has condensed to water again it is hoar-frost; and this appears in winter and is commoner in cold places. It is dew when the vapour has condensed into water and the heat is not so great as to dry up the moisture that has been raised nor the cold sufficient (owing to the warmth of the climate or season) for the vapour itself to freeze. For dew is more commonly found when the season or the place is warm, whereas the opposite, as has been said, is the case with hoar-frost. For obviously vapour is warmer than water, having still the fire that raised it: consequently more cold is needed to freeze it.
Both dew and hoar-frost are found when the sky is clear and there is no wind. For the vapour could not be raised unless the sky were clear, and if a wind were blowing it could not condense.
The fact that hoar-frost is not found on mountains contributes to prove that these phenomena occur because the vapour does not rise high. One reason for this is that it rises from hollow and watery91 places, so that the heat that is raising it, bearing as it were too heavy a burden cannot lift it to a great height but soon lets it fall again. A second reason is that the motion of the air is more pronounced at a height, and this dissolves a gathering of this kind.
Everywhere, except in Pontus, dew is found with south winds and not with north winds. There the opposite is the case and it is found with north winds and not with south. The reason is the same as that which explains why dew is found in warm weather and not in cold. For the south wind brings warm, and the north, wintry weather. For the north wind is cold and so quenches92 the heat of the evaporation. But in Pontus the south wind does not bring warmth enough to cause evaporation, whereas the coldness of the north wind concentrates the heat by a sort of recoil93, so that there is more evaporation and not less. This is a thing which we can often observe in other places too. Wells, for instance, give off more vapour in a north than in a south wind. Only the north winds quench87 the heat before any considerable quantity of vapour has gathered, while in a south wind the evaporation is allowed to accumulate.
Water, once formed, does not freeze on the surface of the earth, in the way that it does in the region of the clouds.
11
From the latter there fall three bodies condensed by cold, namely rain, snow, hail. Two of these correspond to the phenomena on the lower level and are due to the same causes, differing from them only in degree and quantity.
Snow and hoar-frost are one and the same thing, and so are rain and dew: only there is a great deal of the former and little of the latter. For rain is due to the cooling of a great amount of vapour, for the region from which and the time during which the vapour is collected are considerable. But of dew there is little: for the vapour collects for it in a single day and from a small area, as its quick formation and scanty94 quantity show.
The relation of hoar-frost and snow is the same: when cloud freezes there is snow, when vapour freezes there is hoar-frost. Hence snow is a sign of a cold season or country. For a great deal of heat is still present and unless the cold were overpowering it the cloud would not freeze. For there still survives in it a great deal of the heat which caused the moisture to rise as vapour from the earth.
Hail on the other hand is found in the upper region, but the corresponding phenomenon in the vaporous region near the earth is lacking. For, as we said, to snow in the upper region corresponds hoar-frost in the lower, and to rain in the upper region, dew in the lower. But there is nothing here to correspond to hail in the upper region. Why this is so will be clear when we have explained the nature of hail.
12
But we must go on to collect the facts bearing on the origin of it, both those which raise no difficulties and those which seem paradoxical.
Hail is ice, and water freezes in winter; yet hailstorms occur chiefly in spring and autumn and less often in the late summer, but rarely in winter and then only when the cold is less intense. And in general hailstorms occur in warmer, and snow in colder places. Again, there is a difficulty about water freezing in the upper region. It cannot have frozen before becoming water: and water cannot remain suspended in the air for any space of time. Nor can we say that the case is like that of particles of moisture which are carried up owing to their small size and rest on the iar (the water swimming on the air just as small particles of earth and gold often swim on water). In that case large drops are formed by the union of many small, and so fall down. This cannot take place in the case of hail, since solid bodies cannot coalesce62 like liquid ones. Clearly then drops of that size were suspended in the air or else they could not have been so large when frozen.
Some think that the cause and origin of hail is this. The cloud is thrust up into the upper atmosphere, which is colder because the reflection of the sun’s rays from the earth ceases there, and upon its arrival there the water freezes. They think that this explains why hailstorms are commoner in summer and in warm countries; the heat is greater and it thrusts the clouds further up from the earth. But the fact is that hail does not occur at all at a great height: yet it ought to do so, on their theory, just as we see that snow falls most on high mountains. Again clouds have often been observed moving with a great noise close to the earth, terrifying those who heard and saw them as portents95 of some catastrophe96. Sometimes, too, when such clouds have been seen, without any noise, there follows a violent hailstorm, and the stones are of incredible size, and angular in shape. This shows that they have not been falling for long and that they were frozen near to the earth, and not as that theory would have it. Moreover, where the hailstones are large, the cause of their freezing must be present in the highest degree: for hail is ice as every one can see. Now those hailstones are large which are angular in shape. And this shows that they froze close to the earth, for those that fall far are worn away by the length of their fall and become round and smaller in size.
It clearly follows that the congelation does not take place because the cloud is thrust up into the cold upper region.
Now we see that warm and cold react upon one another by recoil. Hence in warm weather the lower parts of the earth are cold and in a frost they are warm. The same thing, we must suppose, happens in the air, so that in the warmer seasons the cold is concentrated by the surrounding heat and causes the cloud to go over into water suddenly. (For this reason rain-drops are much larger on warm days than in winter, and showers more violent. A shower is said to be more violent in proportion as the water comes down in a body, and this happens when the condensation takes place quickly,-though this is just the opposite of what Anaxagoras says. He says that this happens when the cloud has risen into the cold air; whereas we say that it happens when the cloud has descended97 into the warm air, and that the more the further the cloud has descended). But when the cold has been concentrated within still more by the outer heat, it freezes the water it has formed and there is hail. We get hail when the process of freezing is quicker than the descent of the water. For if the water falls in a certain time and the cold is sufficient to freeze it in less, there is no difficulty about its having frozen in the air, provided that the freezing takes place in a shorter time than its fall. The nearer to the earth, and the more suddenly, this process takes place, the more violent is the rain that results and the larger the raindrops and the hailstones because of the shortness of their fall. For the same reason large raindrops do not fall thickly. Hail is rarer in summer than in spring and autumn, though commoner than in winter, because the air is drier in summer, whereas in spring it is still moist, and in autumn it is beginning to grow moist. It is for the same reason that hailstorms sometimes occur in the late summer as we have said.
The fact that the water has previously98 been warmed contributes to its freezing quickly: for so it cools sooner. Hence many people, when they want to cool hot water quickly, begin by putting it in the sun. So the inhabitants of Pontus when they encamp on the ice to fish (they cut a hole in the ice and then fish) pour warm water round their reeds that it may freeze the quicker, for they use the ice like lead to fix the reeds. Now it is in hot countries and seasons that the water which forms soon grows warm.
It is for the same reason that rain falls in summer and not in winter in Arabia and Ethiopia too, and that in torrents99 and repeatedly on the same day. For the concentration or recoil due to the extreme heat of the country cools the clouds quickly.
So much for an account of the nature and causes of rain, dew, snow, hoar-frost, and hail.
13
Let us explain the nature of winds, and all windy vapours, also of rivers and of the sea. But here, too, we must first discuss the difficulties involved: for, as in other matters, so in this no theory has been handed down to us that the most ordinary man could not have thought of.
Some say that what is called air, when it is in motion and flows, is wind, and that this same air when it condenses again becomes cloud and water, implying that the nature of wind and water is the same. So they define wind as a motion of the air. Hence some, wishing to say a clever thing, assert that all the winds are one wind, because the air that moves is in fact all of it one and the same; they maintain that the winds appear to differ owing to the region from which the air may happen to flow on each occasion, but really do not differ at all. This is just like thinking that all rivers are one and the same river, and the ordinary unscientific view is better than a scientific theory like this. If all rivers flow from one source, and the same is true in the case of the winds, there might be some truth in this theory; but if it is no more true in the one case than in the other, this ingenious idea is plainly false. What requires investigation100 is this: the nature of wind and how it originates, its efficient cause and whence they derive10 their source; whether one ought to think of the wind as issuing from a sort of vessel101 and flowing until the vessel is empty, as if let out of a wineskin, or, as painters represent the winds, as drawing their source from themselves.
We find analogous102 views about the origin of rivers. It is thought that the water is raised by the sun and descends in rain and gathers below the earth and so flows from a great reservoir, all the rivers from one, or each from a different one. No water at all is generated, but the volume of the rivers consists of the water that is gathered into such reservoirs in winter. Hence rivers are always fuller in winter than in summer, and some are perennial103, others not. Rivers are perennial where the reservoir is large and so enough water has collected in it to last out and not be used up before the winter rain returns. Where the reservoirs are smaller there is less water in the rivers, and they are dried up and their vessel empty before the fresh rain comes on.
But if any one will picture to himself a reservoir adequate to the water that is continuously flowing day by day, and consider the amount of the water, it is obvious that a receptacle that is to contain all the water that flows in the year would be larger than the earth, or, at any rate, not much smaller.
Though it is evident that many reservoirs of this kind do exist in many parts of the earth, yet it is unreasonable104 for any one to refuse to admit that air becomes water in the earth for the same reason as it does above it. If the cold causes the vaporous air to condense into water above the earth we must suppose the cold in the earth to produce this same effect, and recognize that there not only exists in it and flows out of it actually formed water, but that water is continually forming in it too.
Again, even in the case of the water that is not being formed from day to day but exists as such, we must not suppose as some do that rivers have their source in definite subterranean lakes. On the contrary, just as above the earth small drops form and these join others, till finally the water descends in a body as rain, so too we must suppose that in the earth the water at first trickles105 together little by little, and that the sources of the rivers drip, as it were, out of the earth and then unite. This is proved by facts. When men construct an aqueduct they collect the water in pipes and trenches, as if the earth in the higher ground were sweating the water out. Hence, too, the head-waters of rivers are found to flow from mountains, and from the greatest mountains there flow the most numerous and greatest rivers. Again, most springs are in the neighbourhood of mountains and of high ground, whereas if we except rivers, water rarely appears in the plains. For mountains and high ground, suspended over the country like a saturated107 sponge, make the water ooze108 out and trickle106 together in minute quantities but in many places. They receive a great deal of water falling as rain (for it makes no difference whether a spongy receptacle is concave and turned up or convex and turned down: in either case it will contain the same volume of matter) and, they also cool the vapour that rises and condense it back into water.
Hence, as we said, we find that the greatest rivers flow from the greatest mountains. This can be seen by looking at itineraries109: what is recorded in them consists either of things which the writer has seen himself or of such as he has compiled after inquiry from those who have seen them.
In Asia we find that the most numerous and greatest rivers flow from the mountain called Parnassus, admittedly the greatest of all mountains towards the south-east. When you have crossed it you see the outer ocean, the further limit of which is unknown to the dwellers110 in our world. Besides other rivers there flow from it the Bactrus, the Choaspes, the Araxes: from the last a branch separates off and flows into lake Maeotis as the Tanais. From it, too, flows the Indus, the volume of whose stream is greatest of all rivers. From the Caucasus flows the Phasis, and very many other great rivers besides. Now the Caucasus is the greatest of the mountains that lie to the northeast, both as regards its extent and its height. A proof of its height is the fact that it can be seen from the so-called ‘deeps’ and from the entrance to the lake. Again, the sun shines on its peaks for a third part of the night before sunrise and again after sunset. Its extent is proved by the fact that thought contains many inhabitable regions which are occupied by many nations and in which there are said to be great lakes, yet they say that all these regions are visible up to the last peak. From Pyrene (this is a mountain towards the west in Celtice) there flow the Istrus and the Tartessus. The latter flows outside the pillars, while the Istrus flows through all Europe into the Euxine. Most of the remaining rivers flow northwards from the Hercynian mountains, which are the greatest in height and extent about that region. In the extreme north, beyond furthest Scythia, are the mountains called Rhipae. The stories about their size are altogether too fabulous111: however, they say that the most and (after the Istrus) the greatest rivers flow from them. So, too, in Libya there flow from the Aethiopian mountains the Aegon and the Nyses; and from the so-called Silver Mountain the two greatest of named rivers, the river called Chremetes that flows into the outer ocean, and the main source of the Nile. Of the rivers in the Greek world, the Achelous flows from Pindus, the Inachus from the same mountain; the Strymon, the Nestus, and the Hebrus all three from Scombrus; many rivers, too, flow from Rhodope.
All other rivers would be found to flow in the same way, but we have mentioned these as examples. Even where rivers flow from marshes112, the marshes in almost every case are found to lie below mountains or gradually rising ground.
It is clear then that we must not suppose rivers to originate from definite reservoirs: for the whole earth, we might almost say, would not be sufficient (any more than the region of the clouds would be) if we were to suppose that they were fed by actually existing water only and it were not the case that as some water passed out of existence some more came into existence, but rivers always drew their stream from an existing store. Secondly113, the fact that rivers rise at the foot of mountains proves that a place transmits the water it contains by gradual percolation114 of many drops, little by little, and that this is how the sources of rivers originate. However, there is nothing impossible about the existence of such places containing a quantity of water like lakes: only they cannot be big enough to produce the supposed effect. To think that they are is just as absurd as if one were to suppose that rivers drew all their water from the sources we see (for most rivers do flow from springs). So it is no more reasonable to suppose those lakes to contain the whole volume of water than these springs.
That there exist such chasms and cavities in the earth we are taught by the rivers that are swallowed up. They are found in many parts of the earth: in the Peloponnesus, for instance, there are many such rivers in Arcadia. The reason is that Arcadia is mountainous and there are no channels from its valleys to the sea. So these places get full of water, and this, having no outlet115, under the pressure of the water that is added above, finds a way out for itself underground. In Greece this kind of thing happens on quite a small scale, but the lake at the foot of the Caucasus, which the inhabitants of these parts call a sea, is considerable. Many great rivers fall into it and it has no visible outlet but issues below the earth off the land of the Coraxi about the so-called ‘deeps of Pontus’. This is a place of unfathomable depth in the sea: at any rate no one has yet been able to find bottom there by sounding. At this spot, about three hundred stadia from land, there comes up sweet water over a large area, not all of it together but in three places. And in Liguria a river equal in size to the Rhodanus is swallowed up and appears again elsewhere: the Rhodanus being a navigable river.
14
The same parts of the earth are not always moist or dry, but they change according as rivers come into existence and dry up. And so the relation of land to sea changes too and a place does not always remain land or sea throughout all time, but where there was dry land there comes to be sea, and where there is now sea, there one day comes to be dry land. But we must suppose these changes to follow some order and cycle. The principle and cause of these changes is that the interior of the earth grows and decays, like the bodies of plants and animals. Only in the case of these latter the process does not go on by parts, but each of them necessarily grows or decays as a whole, whereas it does go on by parts in the case of the earth. Here the causes are cold and heat, which increase and diminish on account of the sun and its course. It is owing to them that the parts of the earth come to have a different character, that some parts remain moist for a certain time, and then dry up and grow old, while other parts in their turn are filled with life and moisture. Now when places become drier the springs necessarily give out, and when this happens the rivers first decrease in size and then finally become dry; and when rivers change and disappear in one part and come into existence correspondingly in another, the sea must needs be affected.
If the sea was once pushed out by rivers and encroached upon the land anywhere, it necessarily leaves that place dry when it recedes; again, if the dry land has encroached on the sea at all by a process of silting116 set up by the rivers when at their full, the time must come when this place will be flooded again.
But the whole vital process of the earth takes place so gradually and in periods of time which are so immense compared with the length of our life, that these changes are not observed, and before their course can be recorded from beginning to end whole nations perish and are destroyed. Of such destructions the most utter and sudden are due to wars; but pestilence118 or famine cause them too. Famines, again, are either sudden and severe or else gradual. In the latter case the disappearance119 of a nation is not noticed because some leave the country while others remain; and this goes on until the land is unable to maintain any inhabitants at all. So a long period of time is likely to elapse from the first departure to the last, and no one remembers and the lapse120 of time destroys all record even before the last inhabitants have disappeared. In the same way a nation must be supposed to lose account of the time when it first settled in a land that was changing from a marshy and watery state and becoming dry. Here, too, the change is gradual and lasts a long time and men do not remember who came first, or when, or what the land was like when they came. This has been the case with Egypt. Here it is obvious that the land is continually getting drier and that the whole country is a deposit of the river Nile. But because the neighbouring peoples settled in the land gradually as the marshes dried, the lapse of time has hidden the beginning of the process. However, all the mouths of the Nile, with the single exception of that at Canopus, are obviously artificial and not natural. And Egypt was nothing more than what is called Thebes, as Homer, too, shows, modern though he is in relation to such changes. For Thebes is the place that he mentions; which implies that Memphis did not yet exist, or at any rate was not as important as it is now. That this should be so is natural, since the lower land came to be inhabited later than that which lay higher. For the parts that lie nearer to the place where the river is depositing the silt117 are necessarily marshy for a longer time since the water always lies most in the newly formed land. But in time this land changes its character, and in its turn enjoys a period of prosperity. For these places dry up and come to be in good condition while the places that were formerly121 well-tempered some day grow excessively dry and deteriorate122. This happened to the land of Argos and Mycenae in Greece. In the time of the Trojan wars the Argive land was marshy and could only support a small population, whereas the land of Mycenae was in good condition (and for this reason Mycenae was the superior). But now the opposite is the case, for the reason we have mentioned: the land of Mycenae has become completely dry and barren, while the Argive land that was formerly barren owing to the water has now become fruitful. Now the same process that has taken place in this small district must be supposed to be going on over whole countries and on a large scale.
Men whose outlook is narrow suppose the cause of such events to be change in the universe, in the sense of a coming to be of the world as a whole. Hence they say that the sea being dried up and is growing less, because this is observed to have happened in more places now than formerly. But this is only partially123 true. It is true that many places are now dry, that formerly were covered with water. But the opposite is true too: for if they look they will find that there are many places where the sea has invaded the land. But we must not suppose that the cause of this is that the world is in process of becoming. For it is absurd to make the universe to be in process because of small and trifling124 changes, when the bulk and size of the earth are surely as nothing in comparison with the whole world. Rather we must take the cause of all these changes to be that, just as winter occurs in the seasons of the year, so in determined periods there comes a great winter of a great year and with it excess of rain. But this excess does not always occur in the same place. The deluge125 in the time of Deucalion, for instance, took place chiefly in the Greek world and in it especially about ancient Hellas, the country about Dodona and the Achelous, a river which has often changed its course. Here the Selli dwelt and those who were formerly called Graeci and now Hellenes. When, therefore, such an excess of rain occurs we must suppose that it suffices for a long time. We have seen that some say that the size of the subterranean cavities is what makes some rivers perennial and others not, whereas we maintain that the size of the mountains is the cause, and their density126 and coldness; for great, dense, and cold mountains catch and keep and create most water: whereas if the mountains that overhang the sources of rivers are small or porous29 and stony127 and clayey, these rivers run dry earlier. We must recognize the same kind of thing in this case too. Where such abundance of rain falls in the great winter it tends to make the moisture of those places almost everlasting128. But as time goes on places of the latter type dry up more, while those of the former, moist type, do so less: until at last the beginning of the same cycle returns.
Since there is necessarily some change in the whole world, but not in the way of coming into existence or perishing (for the universe is permanent), it must be, as we say, that the same places are not for ever moist through the presence of sea and rivers, nor for ever dry. And the facts prove this. The whole land of the Egyptians, whom we take to be the most ancient of men, has evidently gradually come into existence and been produced by the river. This is clear from an observation of the country, and the facts about the Red Sea suffice to prove it too. One of their kings tried to make a canal to it (for it would have been of no little advantage to them for the whole region to have become navigable; Sesostris is said to have been the first of the ancient kings to try), but he found that the sea was higher than the land. So he first, and Darius afterwards, stopped making the canal, lest the sea should mix with the river water and spoil it. So it is clear that all this part was once unbroken sea. For the same reason Libya-the country of Ammon-is, strangely enough, lower and hollower than the land to the seaward of it. For it is clear that a barrier of silt was formed and after it lakes and dry land, but in course of time the water that was left behind in the lakes dried up and is now all gone. Again the silting up of the lake Maeotis by the rivers has advanced so much that the limit to the size of the ships which can now sail into it to trade is much lower than it was sixty years ago. Hence it is easy to infer that it, too, like most lakes, was originally produced by the rivers and that it must end by drying up entirely129.
Again, this process of silting up causes a continuous current through the Bosporus; and in this case we can directly observe the nature of the process. Whenever the current from the Asiatic shore threw up a sandbank, there first formed a small lake behind it. Later it dried up and a second sandbank formed in front of the first and a second lake. This process went on uniformly and without interruption. Now when this has been repeated often enough, in the course of time the strait must become like a river, and in the end the river itself must dry up.
So it is clear, since there will be no end to time and the world is eternal, that neither the Tanais nor the Nile has always been flowing, but that the region whence they flow was once dry: for their effect may be fulfilled, but time cannot. And this will be equally true of all other rivers. But if rivers come into existence and perish and the same parts of the earth were not always moist, the sea must needs change correspondingly. And if the sea is always advancing in one place and receding130 in another it is clear that the same parts of the whole earth are not always either sea or land, but that all this changes in course of time.
So we have explained that the same parts of the earth are not always land or sea and why that is so: and also why some rivers are perennial and others not.
点击收听单词发音
1 specifying | |
v.指定( specify的现在分词 );详述;提出…的条件;使具有特性 | |
参考例句: |
|
|
2 remains | |
n.剩余物,残留物;遗体,遗迹 | |
参考例句: |
|
|
3 inquiry | |
n.打听,询问,调查,查问 | |
参考例句: |
|
|
4 predecessors | |
n.前任( predecessor的名词复数 );前辈;(被取代的)原有事物;前身 | |
参考例句: |
|
|
5 milky | |
adj.牛奶的,多奶的;乳白色的 | |
参考例句: |
|
|
6 undertaking | |
n.保证,许诺,事业 | |
参考例句: |
|
|
7 akin | |
adj.同族的,类似的 | |
参考例句: |
|
|
8 immediate | |
adj.立即的;直接的,最接近的;紧靠的 | |
参考例句: |
|
|
9 derived | |
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取 | |
参考例句: |
|
|
10 derive | |
v.取得;导出;引申;来自;源自;出自 | |
参考例句: |
|
|
11 clement | |
adj.仁慈的;温和的 | |
参考例句: |
|
|
12 affected | |
adj.不自然的,假装的 | |
参考例句: |
|
|
13 drawn | |
v.拖,拉,拔出;adj.憔悴的,紧张的 | |
参考例句: |
|
|
14 phenomena | |
n.现象 | |
参考例句: |
|
|
15 relatively | |
adv.比较...地,相对地 | |
参考例句: |
|
|
16 astronomical | |
adj.天文学的,(数字)极大的 | |
参考例句: |
|
|
17 demonstrations | |
证明( demonstration的名词复数 ); 表明; 表达; 游行示威 | |
参考例句: |
|
|
18 subterranean | |
adj.地下的,地表下的 | |
参考例句: |
|
|
19 spoke | |
n.(车轮的)辐条;轮辐;破坏某人的计划;阻挠某人的行动 v.讲,谈(speak的过去式);说;演说;从某种观点来说 | |
参考例句: |
|
|
20 determined | |
adj.坚定的;有决心的 | |
参考例句: |
|
|
21 infinitely | |
adv.无限地,无穷地 | |
参考例句: |
|
|
22 interval | |
n.间隔,间距;幕间休息,中场休息 | |
参考例句: |
|
|
23 puerile | |
adj.幼稚的,儿童的 | |
参考例句: |
|
|
24 intervals | |
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息 | |
参考例句: |
|
|
25 appreciably | |
adv.相当大地 | |
参考例句: |
|
|
26 disperse | |
vi.使分散;使消失;vt.分散;驱散 | |
参考例句: |
|
|
27 infinity | |
n.无限,无穷,大量 | |
参考例句: |
|
|
28 mere | |
adj.纯粹的;仅仅,只不过 | |
参考例句: |
|
|
29 porous | |
adj.可渗透的,多孔的 | |
参考例句: |
|
|
30 dense | |
a.密集的,稠密的,浓密的;密度大的 | |
参考例句: |
|
|
31 inflames | |
v.(使)变红,发怒,过热( inflame的第三人称单数 ) | |
参考例句: |
|
|
32 inflame | |
v.使燃烧;使极度激动;使发炎 | |
参考例句: |
|
|
33 possessed | |
adj.疯狂的;拥有的,占有的 | |
参考例句: |
|
|
34 virtue | |
n.德行,美德;贞操;优点;功效,效力 | |
参考例句: |
|
|
35 circumference | |
n.圆周,周长,圆周线 | |
参考例句: |
|
|
36 marshy | |
adj.沼泽的 | |
参考例句: |
|
|
37 fiery | |
adj.燃烧着的,火红的;暴躁的;激烈的 | |
参考例句: |
|
|
38 treatise | |
n.专著;(专题)论文 | |
参考例句: |
|
|
39 scattered | |
adj.分散的,稀疏的;散步的;疏疏落落的 | |
参考例句: |
|
|
40 downwards | |
adj./adv.向下的(地),下行的(地) | |
参考例句: |
|
|
41 suffix | |
n.后缀;vt.添后缀 | |
参考例句: |
|
|
42 celestial | |
adj.天体的;天上的 | |
参考例句: |
|
|
43 evaporation | |
n.蒸发,消失 | |
参考例句: |
|
|
44 fully | |
adv.完全地,全部地,彻底地;充分地 | |
参考例句: |
|
|
45 terminology | |
n.术语;专有名词 | |
参考例句: |
|
|
46 disposition | |
n.性情,性格;意向,倾向;排列,部署 | |
参考例句: |
|
|
47 combustible | |
a. 易燃的,可燃的; n. 易燃物,可燃物 | |
参考例句: |
|
|
48 apparently | |
adv.显然地;表面上,似乎 | |
参考例句: |
|
|
49 condensation | |
n.压缩,浓缩;凝结的水珠 | |
参考例句: |
|
|
50 combustion | |
n.燃烧;氧化;骚动 | |
参考例句: |
|
|
51 upwards | |
adv.向上,在更高处...以上 | |
参考例句: |
|
|
52 compulsory | |
n.强制的,必修的;规定的,义务的 | |
参考例句: |
|
|
53 obliquely | |
adv.斜; 倾斜; 间接; 不光明正大 | |
参考例句: |
|
|
54 oblique | |
adj.斜的,倾斜的,无诚意的,不坦率的 | |
参考例句: |
|
|
55 contraction | |
n.缩略词,缩写式,害病 | |
参考例句: |
|
|
56 chasms | |
裂缝( chasm的名词复数 ); 裂口; 分歧; 差别 | |
参考例句: |
|
|
57 trenches | |
深沟,地沟( trench的名词复数 ); 战壕 | |
参考例句: |
|
|
58 crimson | |
n./adj.深(绯)红色(的);vi.脸变绯红色 | |
参考例句: |
|
|
59 peculiar | |
adj.古怪的,异常的;特殊的,特有的 | |
参考例句: |
|
|
60 simultaneously | |
adv.同时发生地,同时进行地 | |
参考例句: |
|
|
61 coalescence | |
n.合并,联合 | |
参考例句: |
|
|
62 coalesce | |
v.联合,结合,合并 | |
参考例句: |
|
|
63 fixed | |
adj.固定的,不变的,准备好的;(计算机)固定的 | |
参考例句: |
|
|
64 thigh | |
n.大腿;股骨 | |
参考例句: |
|
|
65 receded | |
v.逐渐远离( recede的过去式和过去分词 );向后倾斜;自原处后退或避开别人的注视;尤指问题 | |
参考例句: |
|
|
66 inaccessible | |
adj.达不到的,难接近的 | |
参考例句: |
|
|
67 outermost | |
adj.最外面的,远离中心的 | |
参考例句: |
|
|
68 consistency | |
n.一贯性,前后一致,稳定性;(液体的)浓度 | |
参考例句: |
|
|
69 gathering | |
n.集会,聚会,聚集 | |
参考例句: |
|
|
70 diffused | |
散布的,普及的,扩散的 | |
参考例句: |
|
|
71 standing | |
n.持续,地位;adj.永久的,不动的,直立的,不流动的 | |
参考例句: |
|
|
72 chaff | |
v.取笑,嘲笑;n.谷壳 | |
参考例句: |
|
|
73 densest | |
密集的( dense的最高级 ); 密度大的; 愚笨的; (信息量大得)难理解的 | |
参考例句: |
|
|
74 alleged | |
a.被指控的,嫌疑的 | |
参考例句: |
|
|
75 plentiful | |
adj.富裕的,丰富的 | |
参考例句: |
|
|
76 secretion | |
n.分泌 | |
参考例句: |
|
|
77 opposition | |
n.反对,敌对 | |
参考例句: |
|
|
78 gulf | |
n.海湾;深渊,鸿沟;分歧,隔阂 | |
参考例句: |
|
|
79 secreted | |
v.(尤指动物或植物器官)分泌( secrete的过去式和过去分词 );隐匿,隐藏 | |
参考例句: |
|
|
80 scorched | |
烧焦,烤焦( scorch的过去式和过去分词 ); 使(植物)枯萎,把…晒枯; 高速行驶; 枯焦 | |
参考例句: |
|
|
81 constellations | |
n.星座( constellation的名词复数 );一群杰出人物;一系列(相关的想法、事物);一群(相关的人) | |
参考例句: |
|
|
82 cone | |
n.圆锥体,圆锥形东西,球果 | |
参考例句: |
|
|
83 plausible | |
adj.似真实的,似乎有理的,似乎可信的 | |
参考例句: |
|
|
84 recedes | |
v.逐渐远离( recede的第三人称单数 );向后倾斜;自原处后退或避开别人的注视;尤指问题 | |
参考例句: |
|
|
85 dispersing | |
adj. 分散的 动词disperse的现在分词形式 | |
参考例句: |
|
|
86 quenched | |
解(渴)( quench的过去式和过去分词 ); 终止(某事物); (用水)扑灭(火焰等); 将(热物体)放入水中急速冷却 | |
参考例句: |
|
|
87 quench | |
vt.熄灭,扑灭;压制 | |
参考例句: |
|
|
88 descends | |
v.下来( descend的第三人称单数 );下去;下降;下斜 | |
参考例句: |
|
|
89 distinguished | |
adj.卓越的,杰出的,著名的 | |
参考例句: |
|
|
90 drizzle | |
v.下毛毛雨;n.毛毛雨,蒙蒙细雨 | |
参考例句: |
|
|
91 watery | |
adj.有水的,水汪汪的;湿的,湿润的 | |
参考例句: |
|
|
92 quenches | |
解(渴)( quench的第三人称单数 ); 终止(某事物); (用水)扑灭(火焰等); 将(热物体)放入水中急速冷却 | |
参考例句: |
|
|
93 recoil | |
vi.退却,退缩,畏缩 | |
参考例句: |
|
|
94 scanty | |
adj.缺乏的,仅有的,节省的,狭小的,不够的 | |
参考例句: |
|
|
95 portents | |
n.预兆( portent的名词复数 );征兆;怪事;奇物 | |
参考例句: |
|
|
96 catastrophe | |
n.大灾难,大祸 | |
参考例句: |
|
|
97 descended | |
a.为...后裔的,出身于...的 | |
参考例句: |
|
|
98 previously | |
adv.以前,先前(地) | |
参考例句: |
|
|
99 torrents | |
n.倾注;奔流( torrent的名词复数 );急流;爆发;连续不断 | |
参考例句: |
|
|
100 investigation | |
n.调查,调查研究 | |
参考例句: |
|
|
101 vessel | |
n.船舶;容器,器皿;管,导管,血管 | |
参考例句: |
|
|
102 analogous | |
adj.相似的;类似的 | |
参考例句: |
|
|
103 perennial | |
adj.终年的;长久的 | |
参考例句: |
|
|
104 unreasonable | |
adj.不讲道理的,不合情理的,过度的 | |
参考例句: |
|
|
105 trickles | |
n.细流( trickle的名词复数 );稀稀疏疏缓慢来往的东西v.滴( trickle的第三人称单数 );淌;使)慢慢走;缓慢移动 | |
参考例句: |
|
|
106 trickle | |
vi.淌,滴,流出,慢慢移动,逐渐消散 | |
参考例句: |
|
|
107 saturated | |
a.饱和的,充满的 | |
参考例句: |
|
|
108 ooze | |
n.软泥,渗出物;vi.渗出,泄漏;vt.慢慢渗出,流露 | |
参考例句: |
|
|
109 itineraries | |
n.旅程,行程( itinerary的名词复数 ) | |
参考例句: |
|
|
110 dwellers | |
n.居民,居住者( dweller的名词复数 ) | |
参考例句: |
|
|
111 fabulous | |
adj.极好的;极为巨大的;寓言中的,传说中的 | |
参考例句: |
|
|
112 marshes | |
n.沼泽,湿地( marsh的名词复数 ) | |
参考例句: |
|
|
113 secondly | |
adv.第二,其次 | |
参考例句: |
|
|
114 percolation | |
n.过滤,浸透;渗滤;渗漏 | |
参考例句: |
|
|
115 outlet | |
n.出口/路;销路;批发商店;通风口;发泄 | |
参考例句: |
|
|
116 silting | |
n.淤积,淤塞,充填v.(河流等)为淤泥淤塞( silt的现在分词 );(使)淤塞 | |
参考例句: |
|
|
117 silt | |
n.淤泥,淤沙,粉砂层,泥沙层;vt.使淤塞;vi.被淤塞 | |
参考例句: |
|
|
118 pestilence | |
n.瘟疫 | |
参考例句: |
|
|
119 disappearance | |
n.消失,消散,失踪 | |
参考例句: |
|
|
120 lapse | |
n.过失,流逝,失效,抛弃信仰,间隔;vi.堕落,停止,失效,流逝;vt.使失效 | |
参考例句: |
|
|
121 formerly | |
adv.从前,以前 | |
参考例句: |
|
|
122 deteriorate | |
v.变坏;恶化;退化 | |
参考例句: |
|
|
123 partially | |
adv.部分地,从某些方面讲 | |
参考例句: |
|
|
124 trifling | |
adj.微不足道的;没什么价值的 | |
参考例句: |
|
|
125 deluge | |
n./vt.洪水,暴雨,使泛滥 | |
参考例句: |
|
|
126 density | |
n.密集,密度,浓度 | |
参考例句: |
|
|
127 stony | |
adj.石头的,多石头的,冷酷的,无情的 | |
参考例句: |
|
|
128 everlasting | |
adj.永恒的,持久的,无止境的 | |
参考例句: |
|
|
129 entirely | |
ad.全部地,完整地;完全地,彻底地 | |
参考例句: |
|
|
130 receding | |
v.逐渐远离( recede的现在分词 );向后倾斜;自原处后退或避开别人的注视;尤指问题 | |
参考例句: |
|
|
欢迎访问英文小说网 |