小说搜索     点击排行榜   最新入库
首页 » 英文短篇小说 » Curiosities of Heat » CHAPTER V. CONVEYANCE AND VARIETIES OF HEAT.
选择底色: 选择字号:【大】【中】【小】
CHAPTER V. CONVEYANCE AND VARIETIES OF HEAT.
关注小说网官方公众号(noveltingroom),原版名著免费领。

To-day we review the modes in which heat passes or is conveyed from place to place. It is evident that if heat were confined to the very place or point where it is generated, it could subserve none of those uses to which it is now applied1 in the economy of Nature or in the works and arts of man. But heat passes from place to place with great facility, and by one method, with the speed of light, it tends to diffuse2 itself evenly through all; it seeks an equilibrium3. The modes of its diffusion4, or conveyance5, are three in number. Ansel may name them.”

“Heat passes from place to place and from body to body by ‘conduction,’ by ‘radiation,’ and by ‘convection.’”

“What is meant, Ansel, by the ‘conduction’ of heat?”

[Pg 101]“The passing of heat from atom to atom and from particle to particle through a body is called conduction.”

“That is right. I will call upon Peter to give some illustrations of the conduction of heat.”

“The examples are so many,” Peter answered, “that I hardly know what to mention first. If I hold a pin in the flame of a lamp, the part of the pin that touches the flame is first heated, but soon the heat runs along the whole length of the pin and burns my fingers. The parts of a stove which touch the fire are first heated, and from them the heat spreads through the whole stove. A pine-wood shaving, kindled6 at one end, is heated by conduction, but the heat passes through it very little faster than the flame follows. Heat escapes from our bodies by being slowly conducted through our clothing. There is no end to the examples of conduction which one might give.”

“We must not think of the conduction of heat,” said Mr. Wilton, “as if it were a fluid slowly absorbed by a porous7 body, as water poured upon the ground soaks into it, or as water percolates8 through a lump of sugar and moistens the whole of it. We must [Pg 102]remember that the transfer of heat is not a transfer of any substance, but a transfer of motion. One atom is set in motion, and strikes against another atom and sets that in motion, and thus motion is communicated from atom to atom and from molecule9 to molecule through the whole mass of matter till every atom is agitated10 with the heat vibrations11. Do all bodies conduct heat with equal rapidity?”

“No, sir,” replied Ansel; “there is the greatest possible difference. Some substances are called good conductors, because heat permeates12 them so readily and rapidly; others conduct heat very slowly, and are called poor conductors or bad conductors.”

“That is right. Every child soon learns by experience to make a practical distinction of this kind. He very soon understands that he can hold a stick of wood without burning his hand, even though it be blazing at the other end, but that when a piece of iron is red hot at one end he must not take hold of it at the other. The child very soon learns to know the different feeling of a cotton night-gown from one of flannel13, and the difference in apparent warmth between a linen14 pillow-case and a woolen15 blanket.[Pg 103] After a room has been heated for a considerable time the various objects in it all become of the same temperature, and the same is true in a cold room; but how great the difference in the sensations produced by touching16 the oil-cloth and a woolen carpet in a cold room! Good conductors of heat, if hot, feel very hot; or if cold, feel very cold; while poor conductors make a much less decided17 impression. Why is this, Samuel?”

“The good conductors receive heat or part with it very readily. If the good conductor be hotter than our bodies, it imparts its heat rapidly to our hand, and because we receive heat rapidly from it, it feels to us very hot. Or if it be colder than our bodies, it takes heat from our hands very rapidly, and gives the impression of being very cold. Poor conductors impart heat to the skin or take it away more slowly, and hence feel as if their temperature were more nearly like that of the body.”

“The conducting qualities of bodies,” said Mr. Wilton, “seem to depend chiefly upon their structure or the arrangement of their atoms. Bodies which are compact and solid in their structure convey heat more rapidly than those[Pg 104] which are loose and porous. Hence solids are better conductors than fluids, and fluids are better conductors than gases, and among solids the metals are better conductors than organized bodies, like wood or flesh, and better than the loose and porous minerals. In bodies of loose, porous, or fibrous texture18, the continuity of the conductory substance is constantly broken. The particles in a mass of sawdust touch only at a few points, leaving frequent spaces. In woolen and cotton fabrics19 the points of junction20 of the fibres are very few, comparatively. For this reason the motion is not readily communicated from atom to atom.

“The crystalline arrangement of atoms has an influence upon conduction of heat. Heat is conducted more rapidly in a direction parallel with the axis21 of crystallization than across that axis. Wood conducts heat more rapidly in the direction of the grain. This arrangement seems to be well adapted for keeping trees warm in winter. Their roots reach down into the earth, which remains22 warm in the coldest weather. This heat of the earth travels along the fibres up through the tree, while the heat conducted across the fibres escapes much more slowly into the open air.[Pg 105] The bark also, being a very bad conductor, hinders the escape of heat. Of metals, silver is the best conductor. I will give you a brief table which will show the great difference in the conducting qualities of some of the metals. Counting the conducting qualities of silver as 100, the table is: ‘Silver, 100; Gold, 53; Copper23, 74; Iron, 12; Platinum24, 8; German Silver, 6; Bismuth, 2.’—Youmans.

“What is the second method by which heat passes from place to place?”

“It is radiated,” replied Ansel.

“And what is radiation?”

“It is motion in straight lines or rays diverging25 from a centre. From a hot body heat is passing off in straight lines in every direction. As a lamp radiates light, so does a hot body radiate heat.”

“Radiant heat,” said Mr. Wilton, “moves with the same velocity26 as light, that is, one hundred and ninety-two thousand miles per second. It also follows the same general principles as light in all its motions. It is absorbed, reflected, or transmitted in the same manner as light. And this is true of either luminous27 heat—that is, heat radiated from a[Pg 106] body which is red hot—or obscure, or dark heat.

“As there are good and poor conductors, so there are good and bad radiators28 of heat. The radiation of heat depends upon three conditions:

“1. Upon the temperature of the body. The higher the temperature, the more rapid and energetic is its radiation.

“2. Upon the surface of the radiating body. A dull, rough surface radiates heat more rapidly than a surface bright and polished.

“3. Upon the substance of the radiating surface. With surfaces equally smooth and bright, some substances radiate heat much better than others. A surface of varnish29 radiates heat much more powerfully than a surface of gold or silver.

“Ansel, you may, if you can, explain the radiation of heat.”

“I can give no other explanation than that radiation is conduction through that subtle ether which is supposed to pervade30 all space.”

“Very well; perhaps that is as good an explanation as can be given. But it seems rather like the propagation of an impulse than the spreading of atomic vibrations in every [Pg 107]direction. The motion is propagated in straight lines. If it be conduction, it must be carried on by different vibrations from those of ponderable substances. Heat, light, and electricity are supposed to be all propagated through the same theoretical ether. Sir Isaac Newton estimated the density31 of the ether as seventy thousand times less than the density of our atmosphere, and its elasticity33 in proportion to its density as four hundred and ninety millions times greater. But the very existence of this universally-diffused ether is a supposition made to account for the phenomena34 of light, heat, and electricity; and, of course, all its qualities must be theoretical also. Radiation is believed to be the propagation of a motion or impulse through an inconceivably rare and elastic32 ether.

“Peter, what is the third method by which heat passes from place to place?”

“Convection,” was his reply.

“What is meant by convection of heat?”

“The conveyance of heat by carrying a heated body. If I remove a hot iron or a kettle of hot water, I must of course carry the heat which it contains.”

“A very good illustration of the convection[Pg 108] of heat,” said Mr. Wilton, “is seen in the common method of heating water. The heat is applied at the bottom of the vessel35 containing the water; as fast as the water at the bottom next the fire is heated, it rises and carries the heat to the top; cold water comes to take its place, and this in turn is heated and rises and carries heat to the top. This process is carried on till all the water comes to the same temperature. Thus water is heated by convection of heat.

“A grander illustration is seen in winds and ocean currents. Warm winds carry heat enough to warm a continent, and the mighty36 ocean currents are still more efficient in transferring heat from one part of the earth to another.

“Another point we need to understand. When radiant heat falls upon a body, what becomes of it?”

“It is disposed of,” answered Samuel, “in one of three ways: it may be reflected according to the same principles by which light is reflected; or it may be transmitted, that is, pass through the body; or it may be absorbed, that is, stop in it.”

“Very well stated, Samuel. In regard to reflection I need to say very little. You know how light is reflected from a polished surface,[Pg 109] such as a lamp reflector: heat is reflected in the same manner. One fact you must bear in mind touching reflected heat: it does not heat the reflecting body.

“There is no need of telling you that light passes through certain substances. It passes through gases and through some liquids and some solids. The best of glass, though it is so solid, interposes very little hindrance37 to the passage of light. Heat in like manner radiates through certain solids. Luminous heat is radiated through glass. Rock-salt transmits dark heat also. A plate of alum permits light to pass, but stops both luminous heat and dark heat. Remember that transmitted heat, as was said of reflected heat, does not heat the body through which it passes. I have seen boys make burning-glasses of ice. The heat passes through them and burns that upon which it is concentrated, while the ice itself through which the heat passes is not melted.

“If a body have a good radiating surface, that is, if its surface be dull and rough, the heat which falls upon it will be mostly absorbed. The reflecting and absorbing qualities hold an inverse38 ratio to each other; the better the [Pg 110]reflecting qualities, the worse the absorbing, and the worse the reflecting, the better the absorbing. Heat which is absorbed by a body commonly raises its temperature, and remains in the body till it is slowly radiated or is conducted away by the air or other bodies which come in contact with it.

“What is that heat called, Ansel, which is absorbed by a body with no rise of temperature?”

“It is called latent heat.”

“That is the old and common expression, but what is meant by latent heat?”

“The word latent signifies lying hidden or concealed39. Latent heat, as you suggested in your first question, is that heat which a body receives without showing it by a change of temperature.”

“That name ‘latent heat,’” said Mr. Wilton, “expresses the opinion of those who invented it; they supposed that heat was in some manner hidden in certain bodies. We must not suppose, however, that this latent heat continues to exist in bodies as heat; latent heat is that heat which is converted into force or some other motion than the atomic heat vibrations, and is employed[Pg 111] otherwise than in raising the temperature. You will understand this best by an illustration.

“Take one hundred pounds of ice at the temperature of thirty-two degrees, that is, as warm as is possible without melting. That one hundred pounds of ice will absorb heat which would raise one hundred pounds of ice water through one hundred and forty degrees, and by receiving that heat it is melted, but the water produced has the temperature of thirty-two degrees. It has received one hundred and forty degrees of heat, but its temperature is not raised a single degree. This one hundred and forty degrees of heat has been transmuted40 into force and employed in overcoming the crystalline attraction of the atoms of water.

“Let that ice water at thirty-two degrees of temperature receive one hundred and eighty degrees of heat, and the water rises to two hundred and twelve degrees, the temperature of boiling. But whatever additional heat is absorbed brings no increase of temperature, but transforms the water into steam. It is employed in overcoming the cohesive41 attraction of the molecules42 of water and changing the liquid to a gas. About one thousand degrees of heat is thus expended43, but[Pg 112] the steam which is produced has only the temperature of two hundred and twelve degrees. If the process be reversed, the steam gives up, as it is said, the one thousand degrees of heat in returning to the condition of water and the one hundred and forty degrees in resuming the crystalline structure of ice. The heat which was employed as force in overcoming the atomic and molecular44 attractions is transmuted again to heat, and shows itself in raising the temperature. And that which is true of water is true of any other substance in changing its form from a solid to a liquid or from a liquid to a gas, or the opposite. In an amount different for each kind of matter, in all these changes of condition, heat is transmuted to force or force to heat.

“These transmutations are going on ceaselessly in the operations of Nature, and without understanding them we cannot appreciate the wonderful operations of heat in the world. The heat of the sun beams upon the ocean; the greater part of that heat is expended as force in overcoming the molecular attraction of water, thus converting it to vapor45, and in raising that vapor to the higher regions of the atmosphere. This heat-force, or, as we might call it, [Pg 113]‘sunpower,’ expended upon the earth, amounts to thousands of millions of horse-power daily.

 
Transmutation of Heat.

Page 113.

 

“Examples of the transmutation of force into heat abound46 everywhere. A boy strikes his heel upon the stone pavement; from the point of contact between the stone and the steel points in his boot heel sparks of fire fly out. Force is changed to heat so intense that particles of steel are set on fire. Savages47 who have no better methods of kindling48 fire rub dry wood together till the sticks ignite. The force expended in overcoming the friction49 is changed to heat. In the combustion50 of coal beneath the steam boiler51 we see both processes going on. The atoms of carbon dash against the atoms of oxygen, and the force of the collision generates the heat of the combustion. This heat, born thus of force, is again transmuted to force, and drives the engine and the machinery52 attached. In our study of God’s management of heat we shall constantly meet with these changes. You will need, therefore, to study carefully this subject of latent heat.

“Dr. Joule, of Manchester, England, has discovered the ratio between heat and force, that is, the amount of force which by transmutation[Pg 114] produces any given amount of heat. The force of a one-pound weight which has fallen one foot is taken as the unit of force, and the amount of heat which is required to raise one pound of water one degree is taken as the unit of heat. By many and various careful experiments, Dr. Joule demonstrated that 772 units of force are the equivalent of one unit of heat. A pound weight falling 772 feet, or 772 pounds falling one foot, and then arrested, produces heat sufficient to raise one pound of water one degree. The result is the same whatever the method by which the force is expended. If water be agitated or shaken, if sticks of wood or iron plates be rubbed together, if an anvil53 be struck with a hammer, or if a bar of iron or copper be moved back and forth54 between the poles of an electromagnet, the force expended is changed to heat. You must remember, however, that force becomes heat only so far as the force is actually expended, or used up so that it no longer exists as force.

“These conclusions are supported by other beautiful experiments. ‘An electric current which, by resistance in passing through an imperfect conductor, produces heat sufficient[Pg 115] to raise one pound of water one degree, sets free an amount of hydrogen which, when burned, raises exactly one pound of water one degree. Again, the same amount of electricity will produce an attractive magnetic force by which a weight of 772 pounds may be raised one foot high.’—Youmans. We conclude from experiments like these that heat, mechanical force, and electricity are interchangeable forces; they may be transmuted the one into another.

“By this principle of the transmutation of heat and mechanical force we explain the production of heat by compression and the loss of heat by expansion. Samuel, you may state the fact upon this point.”

“If any substance be suddenly compressed,” answered Samuel, “heat appears; if it be expanded, cold is produced. Since gases expand or yield to pressure so readily, they furnish the best illustration of this principle.”

“The suddenness of the compression or expansion,” said Mr. Wilton, “is a matter of no consequence. The effect is the same whether the operation be sudden or slow, but if the compression or expansion be slow, the heat or cold generated is less apparent; the heat is [Pg 116]dissipated as fast as produced and the colder gas is warmed by the vessel which contains it. Ansel, how shall we explain this?”

“I cannot explain it, sir.”

“The explanation is very simple,” said Mr. Wilton. “Mechanical force is employed in the compression of the gas; the force is expended and used up upon the gas, and appears again in the form of atomic heat motion. In the expansion of gases the operation is just the reverse; the atomic heat motion is expended in producing expansion, and hence disappears as heat. The general principle is that no force can be expended in two ways at the same time.

“One other point we must notice to-day, that is, specific heat. What is understood, Ansel, by this term, specific heat?”

“The relative amount of heat which different substances require to raise their temperature through any given number of degrees.”

“That is right. I think that you all must have noticed that it requires much more heat to raise the temperature of some bodies than others. What an amount of heat is required to raise the temperature of water! That heat which will raise one pound of water one degree[Pg 117] will cause an equal increase of temperature in five pounds of sulphur, or four pounds of air, or nine pounds of iron, or eleven pounds of copper, or thirty pounds of mercury, lead, or gold. This is what is meant by saying that one substance has a greater capacity for heat than another. The specific heat of water is greater than that of any other known substance except hydrogen gas. This fact, taken in connection with its great specific latent heat and its poor conducting qualities, renders it exceedingly important in regulating climate and moderating extremes of temperature; of this you will be reminded very often as our lessons go on.

“No law or principle determining the specific heat of the various elements and explaining the different capacities for heat has as yet been discovered. It has been suggested that specific heat depends upon the number of atoms, that it holds an inverse ratio to their combining numbers, or, what is the same thing, a direct ratio to the number of atoms. This would harmonize well with the dynamic theory of heat, but the harmony between the specific heat of substances and the number of atoms is not sufficiently55 uniform to establish this supposition.

[Pg 118]“This completes our review of first principles. I hope that this not very entertaining review of your academic studies has not wearied you of the very word heat and worn out your interest in examining God’s management of heat before making a beginning.”

“I think,” said Samuel, “that we are not in the habit of becoming disgusted with our studies.”

“You may expect,” continued Mr. Wilton, “if the past has been interesting to you, that the lessons to come will prove more interesting still. Next week we shall consider the abundant provision which the Creator has made for warming the earth.”

And let me say to you, patient reader, that if I had known that you were as familiar with the laws and principles of heat as Ansel, Peter, and Samuel seem to have been, this and the preceeding chapter would not have been written. However dull this review may have seemed to you, it was needful, perhaps, for others, that they might understand the wonderful works of God which we shall now proceed to examine. And, reader, do not forget that heat itself, that subtle motion and mighty force, with all its laws and[Pg 119] principles, is one of God’s works. Already have we been looking at the Creator’s handiwork. Already have we been trying to trace out the thoughts of God as they are written in the “Bible of Nature.” The thoughts of God are great and wonderful. It has been useful and interesting to read thus far in this book written with the finger of the Creator of worlds and of man, even if we turn not another page.


点击收听单词发音收听单词发音  

1 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
2 diffuse Al0zo     
v.扩散;传播;adj.冗长的;四散的,弥漫的
参考例句:
  • Direct light is better for reading than diffuse light.直射光比漫射光更有利于阅读。
  • His talk was so diffuse that I missed his point.他的谈话漫无边际,我抓不住他的要点。
3 equilibrium jiazs     
n.平衡,均衡,相称,均势,平静
参考例句:
  • Change in the world around us disturbs our inner equilibrium.我们周围世界的变化扰乱了我们内心的平静。
  • This is best expressed in the form of an equilibrium constant.这最好用平衡常数的形式来表示。
4 diffusion dl4zm     
n.流布;普及;散漫
参考例句:
  • The invention of printing helped the diffusion of learning.印刷术的发明有助于知识的传播。
  • The effect of the diffusion capacitance can be troublesome.扩散电容会引起麻烦。
5 conveyance OoDzv     
n.(不动产等的)转让,让与;转让证书;传送;运送;表达;(正)运输工具
参考例句:
  • Bicycles have become the most popular conveyance for Chinese people.自行车已成为中国人最流行的代步工具。
  • Its another,older,usage is a synonym for conveyance.它的另一个更古老的习惯用法是作为财产转让的同义词使用。
6 kindled d35b7382b991feaaaa3e8ddbbcca9c46     
(使某物)燃烧,着火( kindle的过去式和过去分词 ); 激起(感情等); 发亮,放光
参考例句:
  • We watched as the fire slowly kindled. 我们看着火慢慢地燃烧起来。
  • The teacher's praise kindled a spark of hope inside her. 老师的赞扬激起了她内心的希望。
7 porous 91szq     
adj.可渗透的,多孔的
参考例句:
  • He added sand to the soil to make it more porous.他往土里掺沙子以提高渗水性能。
  • The shell has to be slightly porous to enable oxygen to pass in.外壳不得不有些细小的孔以便能使氧气通过。
8 percolates 065f65ad813a5a81fffacc5597f35c8f     
v.滤( percolate的第三人称单数 );渗透;(思想等)渗透;渗入
参考例句:
  • At a low flow rate, fluid merely percolates through the void spaces between stationary particles. 当流速低的时候,流体只是穿过静止的颗粒之间的空隙。 来自辞典例句
  • Water percolates through sand. 水由沙中滤过。 来自互联网
9 molecule Y6Tzn     
n.分子,克分子
参考例句:
  • A molecule of water is made up of two atoms of hygrogen and one atom of oxygen.一个水分子是由P妈̬f婘̬ 妈̬成的。
  • This gives us the structural formula of the molecule.这种方式给出了分子的结构式。
10 agitated dzgzc2     
adj.被鼓动的,不安的
参考例句:
  • His answers were all mixed up,so agitated was he.他是那样心神不定,回答全乱了。
  • She was agitated because her train was an hour late.她乘坐的火车晚点一个小时,她十分焦虑。
11 vibrations d94a4ca3e6fa6302ae79121ffdf03b40     
n.摆动( vibration的名词复数 );震动;感受;(偏离平衡位置的)一次性往复振动
参考例句:
  • We could feel the vibrations from the trucks passing outside. 我们可以感到外面卡车经过时的颤动。
  • I am drawn to that girl; I get good vibrations from her. 我被那女孩吸引住了,她使我产生良好的感觉。 来自《简明英汉词典》
12 permeates 290eb451e7da5dcf5bb4b8041c3d79fa     
弥漫( permeate的第三人称单数 ); 遍布; 渗入; 渗透
参考例句:
  • Studies show that water vapor quickly permeates plastic packaging material. 研究证明水蒸汽能迅速渗入塑料封装材料。
  • Democracy permeates the whole country. 民主主义(的思想)普及全国。
13 flannel S7dyQ     
n.法兰绒;法兰绒衣服
参考例句:
  • She always wears a grey flannel trousers.她总是穿一条灰色法兰绒长裤。
  • She was looking luscious in a flannel shirt.她穿着法兰绒裙子,看上去楚楚动人。
14 linen W3LyK     
n.亚麻布,亚麻线,亚麻制品;adj.亚麻布制的,亚麻的
参考例句:
  • The worker is starching the linen.这名工人正在给亚麻布上浆。
  • Fine linen and cotton fabrics were known as well as wool.精细的亚麻织品和棉织品像羊毛一样闻名遐迩。
15 woolen 0fKw9     
adj.羊毛(制)的;毛纺的
参考例句:
  • She likes to wear woolen socks in winter.冬天她喜欢穿羊毛袜。
  • There is one bar of woolen blanket on that bed.那张床上有一条毛毯。
16 touching sg6zQ9     
adj.动人的,使人感伤的
参考例句:
  • It was a touching sight.这是一幅动人的景象。
  • His letter was touching.他的信很感人。
17 decided lvqzZd     
adj.决定了的,坚决的;明显的,明确的
参考例句:
  • This gave them a decided advantage over their opponents.这使他们比对手具有明显的优势。
  • There is a decided difference between British and Chinese way of greeting.英国人和中国人打招呼的方式有很明显的区别。
18 texture kpmwQ     
n.(织物)质地;(材料)构造;结构;肌理
参考例句:
  • We could feel the smooth texture of silk.我们能感觉出丝绸的光滑质地。
  • Her skin has a fine texture.她的皮肤细腻。
19 fabrics 678996eb9c1fa810d3b0cecef6c792b4     
织物( fabric的名词复数 ); 布; 构造; (建筑物的)结构(如墙、地面、屋顶):质地
参考例句:
  • cotton fabrics and synthetics 棉织物与合成织物
  • The fabrics are merchandised through a network of dealers. 通过经销网点销售纺织品。
20 junction N34xH     
n.连接,接合;交叉点,接合处,枢纽站
参考例句:
  • There's a bridge at the junction of the two rivers.两河的汇合处有座桥。
  • You must give way when you come to this junction.你到了这个路口必须让路。
21 axis sdXyz     
n.轴,轴线,中心线;坐标轴,基准线
参考例句:
  • The earth's axis is the line between the North and South Poles.地轴是南北极之间的线。
  • The axis of a circle is its diameter.圆的轴线是其直径。
22 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
23 copper HZXyU     
n.铜;铜币;铜器;adj.铜(制)的;(紫)铜色的
参考例句:
  • The students are asked to prove the purity of copper.要求学生们检验铜的纯度。
  • Copper is a good medium for the conduction of heat and electricity.铜是热和电的良导体。
24 platinum CuOyC     
n.白金
参考例句:
  • I'll give her a platinum ring.我打算送给她一枚白金戒指。
  • Platinum exceeds gold in value.白金的价值高于黄金。
25 diverging d7d416587b95cf7081b2b1fd0a9002ea     
分开( diverge的现在分词 ); 偏离; 分歧; 分道扬镳
参考例句:
  • Plants had gradually evolved along diverging and converging pathways. 植物是沿着趋异和趋同两种途径逐渐演化的。
  • With member-country bond yields now diverging, 'it's a fragmented set of markets. 但随着成员国债券收益率之差扩大,市场已经分割开来。
26 velocity rLYzx     
n.速度,速率
参考例句:
  • Einstein's theory links energy with mass and velocity of light.爱因斯坦的理论把能量同质量和光速联系起来。
  • The velocity of light is about 300000 kilometres per second.光速约为每秒300000公里。
27 luminous 98ez5     
adj.发光的,发亮的;光明的;明白易懂的;有启发的
参考例句:
  • There are luminous knobs on all the doors in my house.我家所有门上都安有夜光把手。
  • Most clocks and watches in this shop are in luminous paint.这家商店出售的大多数钟表都涂了发光漆。
28 radiators 3b2bec7153ad581082a64cd93346b77f     
n.(暖气设备的)散热器( radiator的名词复数 );汽车引擎的冷却器,散热器
参考例句:
  • You can preset the radiators to come on when you need them to. 你可以预先调好暖气,使它在你需要的时候启动。
  • Stars are radiators of vast power. 恒星是强大的发光体。 来自《现代英汉综合大词典》
29 varnish ni3w7     
n.清漆;v.上清漆;粉饰
参考例句:
  • He tried to varnish over the facts,but it was useless.他想粉饰事实,但那是徒劳的。
  • He applied varnish to the table.他给那张桌子涂上清漆。
30 pervade g35zH     
v.弥漫,遍及,充满,渗透,漫延
参考例句:
  • Science and technology have come to pervade every aspect of our lives.科学和技术已经渗透到我们生活的每一个方面。
  • The smell of sawdust and glue pervaded the factory.工厂里弥漫着锯屑和胶水的气味。
31 density rOdzZ     
n.密集,密度,浓度
参考例句:
  • The population density of that country is 685 per square mile.那个国家的人口密度为每平方英里685人。
  • The region has a very high population density.该地区的人口密度很高。
32 elastic Tjbzq     
n.橡皮圈,松紧带;adj.有弹性的;灵活的
参考例句:
  • Rubber is an elastic material.橡胶是一种弹性材料。
  • These regulations are elastic.这些规定是有弹性的。
33 elasticity 8jlzp     
n.弹性,伸缩力
参考例句:
  • The skin eventually loses its elasticity.皮肤最终会失去弹性。
  • Every sort of spring has a definite elasticity.每一种弹簧都有一定的弹性。
34 phenomena 8N9xp     
n.现象
参考例句:
  • Ade couldn't relate the phenomena with any theory he knew.艾德无法用他所知道的任何理论来解释这种现象。
  • The object of these experiments was to find the connection,if any,between the two phenomena.这些实验的目的就是探索这两种现象之间的联系,如果存在着任何联系的话。
35 vessel 4L1zi     
n.船舶;容器,器皿;管,导管,血管
参考例句:
  • The vessel is fully loaded with cargo for Shanghai.这艘船满载货物驶往上海。
  • You should put the water into a vessel.你应该把水装入容器中。
36 mighty YDWxl     
adj.强有力的;巨大的
参考例句:
  • A mighty force was about to break loose.一股巨大的力量即将迸发而出。
  • The mighty iceberg came into view.巨大的冰山出现在眼前。
37 hindrance AdKz2     
n.妨碍,障碍
参考例句:
  • Now they can construct tunnel systems without hindrance.现在他们可以顺利地建造隧道系统了。
  • The heavy baggage was a great hindrance to me.那件行李成了我的大累赘。
38 inverse GR6zs     
adj.相反的,倒转的,反转的;n.相反之物;v.倒转
参考例句:
  • Evil is the inverse of good.恶是善的反面。
  • When the direct approach failed he tried the inverse.当直接方法失败时,他尝试相反的做法。
39 concealed 0v3zxG     
a.隐藏的,隐蔽的
参考例句:
  • The paintings were concealed beneath a thick layer of plaster. 那些画被隐藏在厚厚的灰泥层下面。
  • I think he had a gun concealed about his person. 我认为他当时身上藏有一支枪。
40 transmuted 2a95a8b4555ae227b03721439c4922be     
v.使变形,使变质,把…变成…( transmute的过去式和过去分词 )
参考例句:
  • It was once thought that lead could be transmuted into gold. 有人曾经认为铅可以变成黄金。
  • They transmuted the raw materials into finished products. 他们把原料变为成品。 来自《现代英汉综合大词典》
41 cohesive dWdy2     
adj.有粘着力的;有结合力的;凝聚性的
参考例句:
  • She sealed the parcel with cohesive tape.她用粘胶带把包裹封起来。
  • The author skillfully fuses these fragments into a cohesive whole.作者将这些片断巧妙地结合成一个连贯的整体。
42 molecules 187c25e49d45ad10b2f266c1fa7a8d49     
分子( molecule的名词复数 )
参考例句:
  • The structure of molecules can be seen under an electron microscope. 分子的结构可在电子显微镜下观察到。
  • Inside the reactor the large molecules are cracked into smaller molecules. 在反应堆里,大分子裂变为小分子。
43 expended 39b2ea06557590ef53e0148a487bc107     
v.花费( expend的过去式和过去分词 );使用(钱等)做某事;用光;耗尽
参考例句:
  • She expended all her efforts on the care of home and children. 她把所有精力都花在料理家务和照顾孩子上。
  • The enemy had expended all their ammunition. 敌人已耗尽所有的弹药。 来自《简明英汉词典》
44 molecular mE9xh     
adj.分子的;克分子的
参考例句:
  • The research will provide direct insight into molecular mechanisms.这项研究将使人能够直接地了解分子的机理。
  • For the pressure to become zero, molecular bombardment must cease.当压强趋近于零时,分子的碰撞就停止了。
45 vapor DHJy2     
n.蒸汽,雾气
参考例句:
  • The cold wind condenses vapor into rain.冷风使水蒸气凝结成雨。
  • This new machine sometimes transpires a lot of hot vapor.这部机器有时排出大量的热气。
46 abound wykz4     
vi.大量存在;(in,with)充满,富于
参考例句:
  • Oranges abound here all the year round.这里一年到头都有很多橙子。
  • But problems abound in the management of State-owned companies.但是在国有企业的管理中仍然存在不少问题。
47 savages 2ea43ddb53dad99ea1c80de05d21d1e5     
未开化的人,野蛮人( savage的名词复数 )
参考例句:
  • There're some savages living in the forest. 森林里居住着一些野人。
  • That's an island inhabited by savages. 那是一个野蛮人居住的岛屿。
48 kindling kindling     
n. 点火, 可燃物 动词kindle的现在分词形式
参考例句:
  • There were neat piles of kindling wood against the wall. 墙边整齐地放着几堆引火柴。
  • "Coal and kindling all in the shed in the backyard." “煤,劈柴,都在后院小屋里。” 来自汉英文学 - 骆驼祥子
49 friction JQMzr     
n.摩擦,摩擦力
参考例句:
  • When Joan returned to work,the friction between them increased.琼回来工作后,他们之间的摩擦加剧了。
  • Friction acts on moving bodies and brings them to a stop.摩擦力作用于运动着的物体,并使其停止。
50 combustion 4qKzS     
n.燃烧;氧化;骚动
参考例句:
  • We might be tempted to think of combustion.我们也许会联想到氧化。
  • The smoke formed by their combustion is negligible.由它燃烧所生成的烟是可忽略的。
51 boiler OtNzI     
n.锅炉;煮器(壶,锅等)
参考例句:
  • That boiler will not hold up under pressure.那种锅炉受不住压力。
  • This new boiler generates more heat than the old one.这个新锅炉产生的热量比旧锅炉多。
52 machinery CAdxb     
n.(总称)机械,机器;机构
参考例句:
  • Has the machinery been put up ready for the broadcast?广播器材安装完毕了吗?
  • Machinery ought to be well maintained all the time.机器应该随时注意维护。
53 anvil HVxzH     
n.铁钻
参考例句:
  • The blacksmith shaped a horseshoe on his anvil.铁匠在他的铁砧上打出一个马蹄形。
  • The anvil onto which the staples are pressed was not assemble correctly.订书机上的铁砧安装错位。
54 forth Hzdz2     
adv.向前;向外,往外
参考例句:
  • The wind moved the trees gently back and forth.风吹得树轻轻地来回摇晃。
  • He gave forth a series of works in rapid succession.他很快连续发表了一系列的作品。
55 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533