小说搜索     点击排行榜   最新入库
首页 » 英文短篇小说 » A System of Logic: Ratiocinative and Inductive » CHAPTER IV. OF TRAINS OF REASONING, AND DEDUCTIVE SCIENCES.
选择底色: 选择字号:【大】【中】【小】
CHAPTER IV. OF TRAINS OF REASONING, AND DEDUCTIVE SCIENCES.
关注小说网官方公众号(noveltingroom),原版名著免费领。
 § 1. In our analysis of the syllogism1, it appeared that the minor2 premise3 always affirms a resemblance between a new case and some cases previously4 known; while the major premise asserts something which, having been found true of those known cases, we consider ourselves warranted in holding true of any other case resembling the former in certain given particulars.
 
If all ratiocinations resembled, as to the minor premise, the examples which were exclusively employed in the preceding chapter; if the resemblance, which that premise asserts, were obvious to the senses, as in the proposition "Socrates is a man," or were at once ascertainable9 by direct observation; there would be no necessity for trains of reasoning, and Deductive or Ratiocinative Sciences would not exist. Trains of reasoning exist only for the sake of extending an induction10 founded, as all inductions11 must be, on observed cases, to other cases in which we not only cannot directly observe what is to be proved, but cannot directly observe even the mark which is to prove it.
 
§ 2. Suppose the syllogism to be, All cows ruminate12, the animal which is before me is a cow, therefore it ruminates13. The minor, if true at all, is obviously so: the only premise the establishment of which requires any anterior14 process of inquiry15, is the major; and provided the induction of which that premise is the expression was correctly performed, the conclusion respecting the animal now present will be instantly drawn16; because, as soon as she is compared with the formula, she will be identified as being included in it. But suppose the syllogism to be the following:—All arsenic17 is [Pg 235]poisonous, the substance which is before me is arsenic, therefore it is poisonous. The truth of the minor may not here be obvious at first sight; it may not be intuitively evident, but may itself be known only by inference. It may be the conclusion of another argument, which, thrown into the syllogistic18 form, would stand thus:—Whatever when lighted produces a dark spot on a piece of white porcelain19 held in the flame, which spot is soluble20 in hypochlorite of calcium21, is arsenic; the substance before me conforms to this condition; therefore it is arsenic. To establish, therefore, the ultimate conclusion, The substance before me is poisonous, requires a process, which, in order to be syllogistically22 expressed, stands in need of two syllogisms; and we have a Train of Reasoning.
 
When, however, we thus add syllogism to syllogism, we are really adding induction to induction. Two separate inductions must have taken place to render this chain of inference possible; inductions founded, probably, on different sets of individual instances, but which converge23 in their results, so that the instance which is the subject of inquiry comes within the range of them both. The record of these inductions is contained in the majors of the two syllogisms. First, we, or others for us, have examined various objects which yielded under the given circumstances a dark spot with the given property, and found that they possessed24 the properties connoted by the word arsenic; they were metallic25, volatile26, their vapour had a smell of garlic, and so forth27. Next, we, or others for us, have examined various specimens28 which possessed this metallic and volatile character, whose vapour had this smell, &c., and have invariably found that they were poisonous. The first observation we judge that we may extend to all substances whatever which yield that particular kind of dark spot; the second, to all metallic and volatile substances resembling those we examined; and consequently, not to those only which are seen to be such, but to those which are concluded to be such by the prior induction. The substance before us is only seen to come within one of these inductions; but by means of this one, it is brought within the other. We are still, as before, concluding from particulars to [Pg 236]particulars; but we are now concluding from particulars observed, to other particulars which are not, as in the simple case, seen to resemble them in the material points, but inferred to do so, because resembling them in something else, which we have been led by quite a different set of instances to consider as a mark of the former resemblance.
 
This first example of a train of reasoning is still extremely simple, the series consisting of only two syllogisms. The following is somewhat more complicated:—No government, which earnestly seeks the good of its subjects, is likely to be overthrown29; some particular government earnestly seeks the good of its subjects, therefore it is not likely to be overthrown. The major premise in this argument we shall suppose not to be derived30 from considerations à priori, but to be a generalization31 from history, which, whether correct or erroneous, must have been founded on observation of governments concerning whose desire of the good of their subjects there was no doubt. It has been found, or thought to be found, that these were not easily overthrown, and it has been deemed that those instances warranted an extension of the same predicate to any and every government which resembles them in the attribute of desiring earnestly the good of its subjects. But does the government in question thus resemble them? This may be debated pro7 and con5 by many arguments, and must, in any case, be proved by another induction; for we cannot directly observe the sentiments and desires of the persons who carry on the government. To prove the minor, therefore, we require an argument in this form: Every government which acts in a certain manner, desires the good of its subjects; the supposed government acts in that particular manner, therefore it desires the good of its subjects. But is it true that the government acts in the manner supposed? This minor also may require proof; still another induction, as thus:—What is asserted by intelligent and disinterested32 witnesses, may be believed to be true; that the government acts in this manner, is asserted by such witnesses, therefore it may be believed to be true. The argument hence consists of three steps. Having the evidence [Pg 237]of our senses that the case of the government under consideration resembles a number of former cases, in the circumstance of having something asserted respecting it by intelligent and disinterested witnesses, we infer, first, that, as in those former instances, so in this instance, the assertion is true. Secondly33, what was asserted of the government being that it acts in a particular manner, and other governments or persons having been observed to act in the same manner, the government in question is brought into known resemblance with those other governments or persons; and since they were known to desire the good of the people, it is thereupon, by a second induction, inferred that the particular government spoken of, desires the good of the people. This brings that government into known resemblance with the other governments which were thought likely to escape revolution, and thence, by a third induction, it is concluded that this particular government is also likely to escape. This is still reasoning from particulars to particulars, but we now reason to the new instance from three distinct sets of former instances: to one only of those sets of instances do we directly perceive the new one to be similar; but from that similarity we inductively infer that it has the attribute by which it is assimilated to the next set, and brought within the corresponding induction; after which by a repetition of the same operation we infer it to be similar to the third set, and hence a third induction conducts us to the ultimate conclusion.
 
§ 3. Notwithstanding the superior complication of these examples, compared with those by which in the preceding chapter we illustrated34 the general theory of reasoning, every doctrine35 which we then laid down holds equally true in these more intricate cases. The successive general propositions are not steps in the reasoning, are not intermediate links in the chain of inference, between the particulars observed and those to which we apply the observation. If we had sufficiently36 capacious memories, and a sufficient power of maintaining order among a huge mass of details, the reasoning could go [Pg 238]on without any general propositions; they are mere37 formul? for inferring particulars from particulars. The principle of general reasoning is (as before explained), that if from observation of certain known particulars, what was seen to be true of them can be inferred to be true of any others, it may be inferred of all others which are of a certain description. And in order that we may never fail to draw this conclusion in a new case when it can be drawn correctly, and may avoid drawing it when it cannot, we determine once for all what are the distinguishing marks by which such cases may be recognised. The subsequent process is merely that of identifying an object, and ascertaining38 it to have those marks; whether we identify it by the very marks themselves, or by others which we have ascertained39 (through another and a similar process) to be marks of those marks. The real inference is always from particulars to particulars, from the observed instances to an unobserved one: but in drawing this inference, we conform to a formula which we have adopted for our guidance in such operations, and which is a record of the criteria40 by which we thought we had ascertained that we might distinguish when the inference could, and when it could not, be drawn. The real premises41 are the individual observations, even though they may have been forgotten, or, being the observations of others and not of ourselves, may, to us, never have been known: but we have before us proof that we or others once thought them sufficient for an induction, and we have marks to show whether any new case is one of those to which, if then known, the induction would have been deemed to extend. These marks we either recognise at once, or by the aid of other marks, which by another previous induction we collected to be marks of the first. Even these marks of marks may only be recognised through a third set of marks; and we may have a train of reasoning, of any length, to bring a new case within the scope of an induction grounded on particulars its similarity to which is only ascertained in this indirect manner.
 
Thus, in the preceding example, the ultimate inductive inference [Pg 239]was, that a certain government was not likely to be overthrown; this inference was drawn according to a formula in which desire of the public good was set down as a mark of not being likely to be overthrown; a mark of this mark was, acting42 in a particular manner; and a mark of acting in that manner was, being asserted to do so by intelligent and disinterested witnesses: this mark, the government under discussion was recognised by the senses as possessing. Hence that government fell within the last induction, and by it was brought within all the others. The perceived resemblance of the case to one set of observed particular cases, brought it into known resemblance with another set, and that with a third.
 
In the more complex branches of knowledge, the deductions44 seldom consist, as in the examples hitherto exhibited, of a single chain, a a mark of b, b of c, c of d, therefore a a mark of d. They consist (to carry on the same metaphor45) of several chains united at the extremity46, as thus: a a mark of d, b of e, c of f, d e f of n, therefore a b c a mark of n. Suppose, for example, the following combination of circumstances; 1st, rays of light impinging on a reflecting surface; 2nd, that surface parabolic; 3rd, those rays parallel to each other and to the axis47 of the surface. It is to be proved that the concourse of these three circumstances is a mark that the reflected rays will pass through the focus of the parabolic surface. Now, each of the three circumstances is singly a mark of something material to the case. Rays of light impinging on a reflecting surface, are a mark that those rays will be reflected at an angle equal to the angle of incidence. The parabolic form of the surface is a mark that, from any point of it, a line drawn to the focus and a line parallel to the axis will make equal angles with the surface. And finally, the parallelism of the rays to the axis is a mark that their angle of incidence coincides with one of these equal angles. The three marks taken together are therefore a mark of all these three things united. But the three united are evidently a mark that the angle of reflection must coincide with the other of the two equal angles, that formed by a line drawn to the focus; and this again, by [Pg 240]the fundamental axiom concerning straight lines, is a mark that the reflected rays pass through the focus. Most chains of physical deduction43 are of this more complicated type; and even in mathematics such are abundant, as in all propositions where the hypothesis includes numerous conditions: "If a circle be taken, and if within that circle a point be taken, not the centre, and if straight lines be drawn from that point to the circumference48, then," &c.
 
§ 4. The considerations now stated remove a serious difficulty from the view we have taken of reasoning; which view might otherwise have seemed not easily reconcileable with the fact that there are Deductive or Ratiocinative Sciences. It might seem to follow, if all reasoning be induction, that the difficulties of philosophical49 investigation50 must lie in the inductions exclusively, and that when these were easy, and susceptible51 of no doubt or hesitation52, there could be no science, or, at least, no difficulties in science. The existence, for example, of an extensive Science of Mathematics, requiring the highest scientific genius in those who contributed to its creation, and calling for a most continued and vigorous exertion53 of intellect in order to appropriate it when created, may seem hard to be accounted for on the foregoing theory. But the considerations more recently adduced remove the mystery, by showing, that even when the inductions themselves are obvious, there may be much difficulty in finding whether the particular case which is the subject of inquiry comes within them; and ample room for scientific ingenuity54 in so combining various inductions, as, by means of one within which the case evidently falls, to bring it within others in which it cannot be directly seen to be included.
 
When the more obvious of the inductions which can be made in any science from direct observations, have been made, and general formulas have been framed, determining the limits within which these inductions are applicable; as often as a new case can be at once seen to come within one of the formulas, the induction is applied55 to the new case, and the business is ended. But new cases are continually arising, [Pg 241]which do not obviously come within any formula whereby the question we want solved in respect of them could be answered. Let us take an instance from geometry: and as it is taken only for illustration, let the reader concede to us for the present, what we shall endeavour to prove in the next chapter, that the first principles of geometry are results of induction. Our example shall be the fifth proposition of the first book of Euclid. The inquiry is, Are the angles at the base of an isosceles triangle equal or unequal? The first thing to be considered is, what inductions we have, from which we can infer equality or inequality. For inferring equality we have the following formul?:—Things which being applied to each other coincide, are equals. Things which are equal to the same thing are equals. A whole and the sum of its parts are equals. The sums of equal things are equals. The differences of equal things are equals. There are no other original formul? to prove equality. For inferring inequality we have the following:—A whole and its parts are unequals. The sums of equal things and unequal things are unequals. The differences of equal things and unequal things are unequals. In all, eight formul?. The angles at the base of an isosceles triangle do not obviously come within any of these. The formul? specify56 certain marks of equality and of inequality, but the angles cannot be perceived intuitively to have any of those marks. On examination it appears that they have; and we ultimately succeed in bringing them within the formula, "The differences of equal things are equal." Whence comes the difficulty of recognising these angles as the differences of equal things? Because each of them is the difference not of one pair only, but of innumerable pairs of angles; and out of these we had to imagine and select two, which could either be intuitively perceived to be equals, or possessed some of the marks of equality set down in the various formul?. By an exercise of ingenuity, which, on the part of the first inventor, deserves to be regarded as considerable, two pairs of angles were hit upon, which united these requisites57. First, it could be perceived intuitively that their differences were the angles at the base; and, secondly, they possessed one of the marks of [Pg 242]equality, namely, coincidence when applied to one another. This coincidence, however, was not perceived intuitively, but inferred, in conformity59 to another formula.
 
For greater clearness, I subjoin an analysis of the demonstration60. Euclid, it will be remembered, demonstrates his fifth proposition by means of the fourth. This it is not allowable for us to do, because we are undertaking61 to trace deductive truths not to prior deductions, but to their original inductive foundation. We must therefore use the premises of the fourth proposition instead of its conclusion, and prove the fifth directly from first principles. To do so requires six formulas. (We must begin, as in Euclid, by prolonging the equal sides AB, AC, to equal distances, and joining the extremities62 BE, DC.)
 
 
First Formula. The sums of equals are equal.
 
AD and AE are sums of equals by the supposition. Having that mark of equality, they are concluded by this formula to be equal.
 
Second Formula. Equal straight lines being applied to one another coincide.
 
AC, AB, are within this formula by supposition; AD, AE, have been brought within it by the preceding step. Both these pairs of straight lines have the property of equality; which, according to the second formula, is a mark that, if applied to each other, they will coincide. Coinciding altogether means coinciding in every part, and of course at their extremities, D, E, and B, C.
 
Third Formula. Straight lines, having their extremities coincident, coincide.
 
BE and CD have been brought within this formula by the preceding induction; they will, therefore, coincide.
 
[Pg 243]
 
Fourth Formula. Angles, having their sides coincident, coincide.
 
The third induction having shown that BE and CD coincide, and the second that AB, AC, coincide, the angles ABE and ACD are thereby63 brought within the fourth formula, and accordingly coincide.
 
Fifth Formula. Things which coincide are equal.
 
The angles ABE and ACD are brought within this formula by the induction immediately preceding. This train of reasoning being also applicable, mutatis mutandis, to the angles EBC, DCB, these also are brought within the fifth formula. And, finally,
 
Sixth Formula. The differences of equals are equal.
 
The angle ABC being the difference of ABE, CBE, and the angle ACB being the difference of ACD, DCB; which have been proved to be equals; ABC and ACB are brought within the last formula by the whole of the previous process.
 
The difficulty here encountered is chiefly that of figuring to ourselves the two angles at the base of the triangle ABC as remainders made by cutting one pair of angles out of another, while each pair shall be corresponding angles of triangles which have two sides and the intervening angle equal. It is by this happy contrivance that so many different inductions are brought to bear upon the same particular case. And this not being at all an obvious thought, it may be seen from an example so near the threshold of mathematics, how much scope there may well be for scientific dexterity64 in the higher branches of that and other sciences, in order so to combine a few simple inductions, as to bring within each of them innumerable cases which are not obviously included in it; and how long, and numerous, and complicated may be the processes necessary for bringing the inductions together, even when each induction may itself be very easy and simple. All the inductions involved in all geometry are comprised in those simple ones, the formul? of which are the Axioms, and a few of the [Pg 244]so-called Definitions. The remainder of the science is made up of the processes employed for bringing unforeseen cases within these inductions; or (in syllogistic language) for proving the minors65 necessary to complete the syllogisms; the majors being the definitions and axioms. In those definitions and axioms are laid down the whole of the marks, by an artful combination of which it has been found possible to discover and prove all that is proved in geometry. The marks being so few, and the inductions which furnish them being so obvious and familiar; the connecting of several of them together, which constitutes Deductions, or Trains of Reasoning, forms the whole difficulty of the science, and with a trifling66 exception, its whole bulk; and hence Geometry is a Deductive Science.
 
§ 5. It will be seen hereafter[18] that there are weighty scientific reasons for giving to every science as much of the character of a Deductive Science as possible; for endeavouring to construct the science from the fewest and the simplest possible inductions, and to make these, by any combinations however complicated, suffice for proving even such truths, relating to complex cases, as could be proved, if we chose, by inductions from specific experience. Every branch of natural philosophy was originally experimental; each generalization rested on a special induction, and was derived from its own distinct set of observations and experiments. From being sciences of pure experiment, as the phrase is, or, to speak more correctly, sciences in which the reasonings mostly consist of no more than one step, and are expressed by single syllogisms, all these sciences have become to some extent, and some of them in nearly the whole of their extent, sciences of pure reasoning; whereby multitudes of truths, already known by induction from as many different sets of experiments, have come to be exhibited as deductions or corollaries from inductive propositions of a simpler and more universal character. Thus mechanics, hydrostatics, optics, acoustics67, thermology, [Pg 245]have successively been rendered mathematical; and astronomy was brought by Newton within the laws of general mechanics. Why it is that the substitution of this circuitous68 mode of proceeding69 for a process apparently70 much easier and more natural, is held, and justly, to be the greatest triumph of the investigation of nature, we are not, in this stage of our inquiry, prepared to examine. But it is necessary to remark, that although, by this progressive transformation71, all sciences tend to become more and more Deductive, they are not, therefore, the less Inductive; every step in the Deduction is still an Induction. The opposition72 is not between the terms Deductive and Inductive, but between Deductive and Experimental. A science is experimental, in proportion as every new case, which presents any peculiar73 features, stands in need of a new set of observations and experiments—a fresh induction. It is deductive, in proportion as it can draw conclusions, respecting cases of a new kind, by processes which bring those cases under old inductions; by ascertaining that cases which cannot be observed to have the requisite58 marks, have, however, marks of those marks.
 
We can now, therefore, perceive what is the generic74 distinction between sciences which can be made Deductive, and those which must as yet remain Experimental. The difference consists in our having been able, or not yet able, to discover marks of marks. If by our various inductions we have been able to proceed no further than to such propositions as these, a a mark of b, or a and b marks of one another, c a mark of d, or c and d marks of one another, without anything to connect a or b with c or d; we have a science of detached and mutually independent generalizations75, such as these, that acids redden vegetable blues76, and that alkalies colour them green; from neither of which propositions could we, directly or indirectly77, infer the other: and a science, so far as it is composed of such propositions, is purely78 experimental. Chemistry, in the present state of our knowledge, has not yet thrown off this character. There are other sciences, however, of which the propositions are of this kind: a a mark of b, b a mark of c, c of d, d of e, &c. In these sciences we can mount [Pg 246]the ladder from a to e by a process of ratiocination6; we can conclude that a is a mark of e, and that every object which has the mark a has the property e, although, perhaps, we never were able to observe a and e together, and although even d, our only direct mark of e, may not be perceptible in those objects, but only inferrible. Or, varying the first metaphor, we may be said to get from a to e underground: the marks b, c, d, which indicate the route, must all be possessed somewhere by the objects concerning which we are inquiring; but they are below the surface: a is the only mark that is visible, and by it we are able to trace in succession all the rest.
 
§ 6. We can now understand how an experimental may transform itself into a deductive science by the mere progress of experiment. In an experimental science, the inductions, as we have said, lie detached, as, a a mark of b, c a mark of d, e a mark of f, and so on: now, a new set of instances, and a consequent new induction, may at any time bridge over the interval79 between two of these unconnected arches; b, for example, may be ascertained to be a mark of c, which enables us thenceforth to prove deductively that a is a mark of c. Or, as sometimes happens, some comprehensive induction may raise an arch high in the air, which bridges over hosts of them at once: b, d, f, and all the rest, turning out to be marks of some one thing, or of things between which a connexion has already been traced. As when Newton discovered that the motions, whether regular or apparently anomalous80, of all the bodies of the solar system, (each of which motions had been inferred by a separate logical operation, from separate marks,) were all marks of moving round a common centre, with a centripetal81 force varying directly as the mass, and inversely82 as the square of the distance from that centre. This is the greatest example which has yet occurred of the transformation, at one stroke, of a science which was still to a great degree merely experimental, into a deductive science.
 
Transformations83 of the same nature, but on a smaller scale, [Pg 247]continually take place in the less advanced branches of physical knowledge, without enabling them to throw off the character of experimental sciences. Thus with regard to the two unconnected propositions before cited, namely, Acids redden vegetable blues, Alkalies make them green; it is remarked by Liebig, that all blue colouring matters which are reddened by acids (as well as, reciprocally, all red colouring matters which are rendered blue by alkalies) contain nitrogen: and it is quite possible that this circumstance may one day furnish a bond of connexion between the two propositions in question, by showing that the antagonistic84 action of acids and alkalies in producing or destroying the colour blue, is the result of some one, more general, law. Although this connecting of detached generalizations is so much gain, it tends but little to give a deductive character to any science as a whole; because the new courses of observation and experiment, which thus enable us to connect together a few general truths, usually make known to us a still greater number of unconnected new ones. Hence chemistry, though similar extensions and simplifications of its generalizations are continually taking place, is still in the main an experimental science; and is likely so to continue unless some comprehensive induction should be hereafter arrived at, which, like Newton's, shall connect a vast number of the smaller known inductions together, and change the whole method of the science at once. Chemistry has already one great generalization, which, though relating to one of the subordinate aspects of chemical phenomena85, possesses within its limited sphere this comprehensive character; the principle of Dalton, called the atomic theory, or the doctrine of chemical equivalents: which by enabling us to a certain extent to foresee the proportions in which two substances will combine, before the experiment has been tried, constitutes undoubtedly86 a source of new chemical truths obtainable by deduction, as well as a connecting principle for all truths of the same description previously obtained by experiment.
 
§ 7. The discoveries which change the method of a science from experimental to deductive, mostly consist in [Pg 248]establishing, either by deduction or by direct experiment, that the varieties of a particular phenomenon uniformly accompany the varieties of some other phenomenon better known. Thus the science of sound, which previously stood in the lowest rank of merely experimental science, became deductive when it was proved by experiment that every variety of sound was consequent on, and therefore a mark of, a distinct and definable variety of oscillatory motion among the particles of the transmitting medium. When this was ascertained, it followed that every relation of succession or coexistence which obtained between phenomena of the more known class, obtained also between the phenomena which corresponded to them in the other class. Every sound, being a mark of a particular oscillatory motion, became a mark of everything which, by the laws of dynamics87, was known to be inferrible from that motion; and everything which by those same laws was a mark of any oscillatory motion among the particles of an elastic88 medium, became a mark of the corresponding sound. And thus many truths, not before suspected, concerning sound, become deducible from the known laws of the propagation of motion through an elastic medium; while facts already empirically known respecting sound, become an indication of corresponding properties of vibrating bodies, previously undiscovered.
 
But the grand agent for transforming experimental into deductive sciences, is the science of number. The properties of numbers, alone among all known phenomena, are, in the most rigorous sense, properties of all things whatever. All things are not coloured, or ponderable, or even extended; but all things are numerable. And if we consider this science in its whole extent, from common arithmetic up to the calculus89 of variations, the truths already ascertained seem all but infinite, and admit of indefinite extension.
 
These truths, though affirmable of all things whatever, of course apply to them only in respect of their quantity. But if it comes to be discovered that variations of quality in any class of phenomena, correspond regularly to variations of quantity either in those same or in some other phenomena; [Pg 249]every formula of mathematics applicable to quantities which vary in that particular manner, becomes a mark of a corresponding general truth respecting the variations in quality which accompany them: and the science of quantity being (as far as any science can be) altogether deductive, the theory of that particular kind of qualities becomes, to this extent, deductive likewise.
 
The most striking instance in point which history affords (though not an example of an experimental science rendered deductive, but of an unparalleled extension given to the deductive process in a science which was deductive already), is the revolution in geometry which originated with Descartes, and was completed by Clairaut. These great mathematicians90 pointed91 out the importance of the fact, that to every variety of position in points, direction in lines, or form in curves or surfaces (all of which are Qualities), there corresponds a peculiar relation of quantity between either two or three rectilineal co-ordinates; insomuch that if the law were known according to which those co-ordinates vary relatively92 to one another, every other geometrical property of the line or surface in question, whether relating to quantity or quality, would be capable of being inferred. Hence it followed that every geometrical question could be solved, if the corresponding algebraical one could; and geometry received an accession (actual or potential) of new truths, corresponding to every property of numbers which the progress of the calculus had brought, or might in future bring, to light. In the same general manner, mechanics, astronomy, and in a less degree, every branch of natural philosophy commonly so called, have been made algebraical. The varieties of physical phenomena with which those sciences are conversant93, have been found to answer to determinable varieties in the quantity of some circumstance or other; or at least to varieties of form or position, for which corresponding equations of quantity had already been, or were susceptible of being, discovered by geometers.
 
In these various transformations, the propositions of the science of number do but fulfil the function proper to all propositions [Pg 250]forming a train of reasoning, viz. that of enabling us to arrive in an indirect method, by marks of marks, at such of the properties of objects as we cannot directly ascertain8 (or not so conveniently) by experiment. We travel from a given visible or tangible94 fact, through the truths of numbers, to the facts sought. The given fact is a mark that a certain relation subsists95 between the quantities of some of the elements concerned; while the fact sought presupposes a certain relation between the quantities of some other elements: now, if these last quantities are dependent in some known manner upon the former, or vice96 versa, we can argue from the numerical relation between the one set of quantities, to determine that which subsists between the other set; the theorems of the calculus affording the intermediate links. And thus one of the two physical facts becomes a mark of the other, by being a mark of a mark of a mark of it.

点击收听单词发音收听单词发音  

1 syllogism yrSwQ     
n.演绎法,三段论法
参考例句:
  • The ramifications or the mystery of a syllogism can become a weariness and a bore.三段论证法的分歧或者神秘会变成一种无聊、一种麻烦。
  • The unexpected bursts forth from the syllogism.三段论里常出岔子。
2 minor e7fzR     
adj.较小(少)的,较次要的;n.辅修学科;vi.辅修
参考例句:
  • The young actor was given a minor part in the new play.年轻的男演员在这出新戏里被分派担任一个小角色。
  • I gave him a minor share of my wealth.我把小部分财产给了他。
3 premise JtYyy     
n.前提;v.提论,预述
参考例句:
  • Let me premise my argument with a bit of history.让我引述一些史实作为我立论的前提。
  • We can deduce a conclusion from the premise.我们可以从这个前提推出结论。
4 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
5 con WXpyR     
n.反对的观点,反对者,反对票,肺病;vt.精读,学习,默记;adv.反对地,从反面;adj.欺诈的
参考例句:
  • We must be fair and consider the reason pro and con.我们必须公平考虑赞成和反对的理由。
  • The motion is adopted non con.因无人投反对票,协议被通过。
6 ratiocination ZT5x0     
n.推理;推断
参考例句:
  • There's no difference of Win or lose,or good or bad in ratiocination.推理是没有胜负、好坏之分的。
  • Your thesis is short for the accurate ratiocination to suppose your argument.你的论文缺少能证明你的论点的正确推理。
7 pro tk3zvX     
n.赞成,赞成的意见,赞成者
参考例句:
  • The two debating teams argued the question pro and con.辩论的两组从赞成与反对两方面辩这一问题。
  • Are you pro or con nuclear disarmament?你是赞成还是反对核裁军?
8 ascertain WNVyN     
vt.发现,确定,查明,弄清
参考例句:
  • It's difficult to ascertain the coal deposits.煤储量很难探明。
  • We must ascertain the responsibility in light of different situtations.我们必须根据不同情况判定责任。
9 ascertainable 0f25bb914818bb2009b0bc39cc578143     
adj.可确定(探知),可发现的
参考例句:
  • Is the exact value of the missing jewels ascertainable? 那些不知去向之珠宝的确切价值弄得清楚吗? 来自辞典例句
  • Even a schoolboy's jape is supposed to have some ascertainable point. 即使一个小男生的戏言也可能有一些真义。 来自互联网
10 induction IbJzj     
n.感应,感应现象
参考例句:
  • His induction as a teacher was a turning point in his life.他就任教师工作是他一生的转折点。
  • The magnetic signals are sensed by induction coils.磁信号由感应线圈所检测。
11 inductions 5b19d140b5f03ff6a28e7cf5419fcd46     
归纳(法)( induction的名词复数 ); (电或磁的)感应; 就职; 吸入
参考例句:
12 ruminate iCwzc     
v.反刍;沉思
参考例句:
  • It is worth while to ruminate over his remarks.他的话值得玩味。
  • The cow began to ruminate after eating up grass.牛吃完草后开始反刍。
13 ruminates 18de3dc5e4c471aa62920c6b1a6d3da1     
v.沉思( ruminate的第三人称单数 );反复考虑;反刍;倒嚼
参考例句:
  • Where depression questions, ruminates and hesitates, mania answers with vigor and certainty. 当抑郁患者发出疑问、覆考虑,且裹足不前时,躁狂患者则以充份的活力与信心勇往直前。 来自互联网
  • A cow ruminates its food. 牛反刍所吃的食物。 来自互联网
14 anterior mecyi     
adj.较早的;在前的
参考例句:
  • We've already finished the work anterior to the schedule.我们已经提前完成了工作。
  • The anterior part of a fish contains the head and gills.鱼的前部包括头和鳃。
15 inquiry nbgzF     
n.打听,询问,调查,查问
参考例句:
  • Many parents have been pressing for an inquiry into the problem.许多家长迫切要求调查这个问题。
  • The field of inquiry has narrowed down to five persons.调查的范围已经缩小到只剩5个人了。
16 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
17 arsenic 2vSz4     
n.砒霜,砷;adj.砷的
参考例句:
  • His wife poisoned him with arsenic.他的妻子用砒霜把他毒死了。
  • Arsenic is a poison.砒霜是毒药。
18 syllogistic 8f89e5181b945497c3a42b16ae218d07     
adj.三段论法的,演绎的,演绎性的
参考例句:
19 porcelain USvz9     
n.瓷;adj.瓷的,瓷制的
参考例句:
  • These porcelain plates have rather original designs on them.这些瓷盘的花纹很别致。
  • The porcelain vase is enveloped in cotton.瓷花瓶用棉花裹着。
20 soluble LrMya     
adj.可溶的;可以解决的
参考例句:
  • These tablets are soluble in water.这些药片可在水中溶解。
  • Camphor is soluble in alcohol.樟脑在酒精中可以溶化。
21 calcium sNdzY     
n.钙(化学符号Ca)
参考例句:
  • We need calcium to make bones.我们需要钙来壮骨。
  • Calcium is found most abundantly in milk.奶含钙最丰富。
22 syllogistically fe271188e84e73c4497f7bcbfcc4192a     
adv.三段论法式地,演绎式地
参考例句:
23 converge 6oozx     
vi.会合;聚集,集中;(思想、观点等)趋近
参考例句:
  • The results converge towards this truth.其结果趋近于这个真理。
  • Parallel lines converge at infinity.平行线永不相交。
24 possessed xuyyQ     
adj.疯狂的;拥有的,占有的
参考例句:
  • He flew out of the room like a man possessed.他像着了魔似地猛然冲出房门。
  • He behaved like someone possessed.他行为举止像是魔怔了。
25 metallic LCuxO     
adj.金属的;金属制的;含金属的;产金属的;像金属的
参考例句:
  • A sharp metallic note coming from the outside frightened me.外面传来尖锐铿锵的声音吓了我一跳。
  • He picked up a metallic ring last night.昨夜他捡了一个金属戒指。
26 volatile tLQzQ     
adj.反复无常的,挥发性的,稍纵即逝的,脾气火爆的;n.挥发性物质
参考例句:
  • With the markets being so volatile,investments are at great risk.由于市场那么变化不定,投资冒着很大的风险。
  • His character was weak and volatile.他这个人意志薄弱,喜怒无常。
27 forth Hzdz2     
adv.向前;向外,往外
参考例句:
  • The wind moved the trees gently back and forth.风吹得树轻轻地来回摇晃。
  • He gave forth a series of works in rapid succession.他很快连续发表了一系列的作品。
28 specimens 91fc365099a256001af897127174fcce     
n.样品( specimen的名词复数 );范例;(化验的)抽样;某种类型的人
参考例句:
  • Astronauts have brought back specimens of rock from the moon. 宇航员从月球带回了岩石标本。
  • The traveler brought back some specimens of the rocks from the mountains. 那位旅行者从山上带回了一些岩石标本。 来自《简明英汉词典》
29 overthrown 1e19c245f384e53a42f4faa000742c18     
adj. 打翻的,推倒的,倾覆的 动词overthrow的过去分词
参考例句:
  • The president was overthrown in a military coup. 总统在军事政变中被赶下台。
  • He has overthrown the basic standards of morality. 他已摒弃了基本的道德标准。
30 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
31 generalization 6g4xv     
n.普遍性,一般性,概括
参考例句:
  • This sweeping generalization is the law of conservation of energy.这一透彻的概括就是能量守恒定律。
  • The evaluation of conduct involves some amount of generalization.对操行的评价会含有一些泛泛之论。
32 disinterested vu4z6s     
adj.不关心的,不感兴趣的
参考例句:
  • He is impartial and disinterested.他公正无私。
  • He's always on the make,I have never known him do a disinterested action.他这个人一贯都是唯利是图,我从来不知道他有什么无私的行动。
33 secondly cjazXx     
adv.第二,其次
参考例句:
  • Secondly,use your own head and present your point of view.第二,动脑筋提出自己的见解。
  • Secondly it is necessary to define the applied load.其次,需要确定所作用的载荷。
34 illustrated 2a891807ad5907f0499171bb879a36aa     
adj. 有插图的,列举的 动词illustrate的过去式和过去分词
参考例句:
  • His lecture was illustrated with slides taken during the expedition. 他在讲演中使用了探险时拍摄到的幻灯片。
  • The manufacturing Methods: Will be illustrated in the next chapter. 制作方法将在下一章说明。
35 doctrine Pkszt     
n.教义;主义;学说
参考例句:
  • He was impelled to proclaim his doctrine.他不得不宣扬他的教义。
  • The council met to consider changes to doctrine.宗教议会开会考虑更改教义。
36 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
37 mere rC1xE     
adj.纯粹的;仅仅,只不过
参考例句:
  • That is a mere repetition of what you said before.那不过是重复了你以前讲的话。
  • It's a mere waste of time waiting any longer.再等下去纯粹是浪费时间。
38 ascertaining e416513cdf74aa5e4277c1fc28aab393     
v.弄清,确定,查明( ascertain的现在分词 )
参考例句:
  • I was ascertaining whether the cellar stretched out in front or behind. 我当时是要弄清楚地下室是朝前还是朝后延伸的。 来自辞典例句
  • The design and ascertaining of permanent-magnet-biased magnetic bearing parameter are detailed introduced. 并对永磁偏置磁悬浮轴承参数的设计和确定进行了详细介绍。 来自互联网
39 ascertained e6de5c3a87917771a9555db9cf4de019     
v.弄清,确定,查明( ascertain的过去式和过去分词 )
参考例句:
  • The previously unidentified objects have now been definitely ascertained as being satellites. 原来所说的不明飞行物现在已证实是卫星。 来自《简明英汉词典》
  • I ascertained that she was dead. 我断定她已经死了。 来自《简明英汉词典》
40 criteria vafyC     
n.标准
参考例句:
  • The main criterion is value for money.主要的标准是钱要用得划算。
  • There are strict criteria for inclusion in the competition.参赛的标准很严格。
41 premises 6l1zWN     
n.建筑物,房屋
参考例句:
  • According to the rules,no alcohol can be consumed on the premises.按照规定,场内不准饮酒。
  • All repairs are done on the premises and not put out.全部修缮都在家里进行,不用送到外面去做。
42 acting czRzoc     
n.演戏,行为,假装;adj.代理的,临时的,演出用的
参考例句:
  • Ignore her,she's just acting.别理她,她只是假装的。
  • During the seventies,her acting career was in eclipse.在七十年代,她的表演生涯黯然失色。
43 deduction 0xJx7     
n.减除,扣除,减除额;推论,推理,演绎
参考例句:
  • No deduction in pay is made for absence due to illness.因病请假不扣工资。
  • His deduction led him to the correct conclusion.他的推断使他得出正确的结论。
44 deductions efdb24c54db0a56d702d92a7f902dd1f     
扣除( deduction的名词复数 ); 结论; 扣除的量; 推演
参考例句:
  • Many of the older officers trusted agents sightings more than cryptanalysts'deductions. 许多年纪比较大的军官往往相信特务的发现,而不怎么相信密码分析员的推断。
  • You know how you rush at things,jump to conclusions without proper deductions. 你知道你处理问题是多么仓促,毫无合适的演绎就仓促下结论。
45 metaphor o78zD     
n.隐喻,暗喻
参考例句:
  • Using metaphor,we say that computers have senses and a memory.打个比方,我们可以说计算机有感觉和记忆力。
  • In poetry the rose is often a metaphor for love.玫瑰在诗中通常作为爱的象征。
46 extremity tlgxq     
n.末端,尽头;尽力;终极;极度
参考例句:
  • I hope you will help them in their extremity.我希望你能帮助在穷途末路的他们。
  • What shall we do in this extremity?在这种极其困难的情况下我们该怎么办呢?
47 axis sdXyz     
n.轴,轴线,中心线;坐标轴,基准线
参考例句:
  • The earth's axis is the line between the North and South Poles.地轴是南北极之间的线。
  • The axis of a circle is its diameter.圆的轴线是其直径。
48 circumference HOszh     
n.圆周,周长,圆周线
参考例句:
  • It's a mile round the circumference of the field.运动场周长一英里。
  • The diameter and the circumference of a circle correlate.圆的直径与圆周有相互关系。
49 philosophical rN5xh     
adj.哲学家的,哲学上的,达观的
参考例句:
  • The teacher couldn't answer the philosophical problem.老师不能解答这个哲学问题。
  • She is very philosophical about her bad luck.她对自己的不幸看得很开。
50 investigation MRKzq     
n.调查,调查研究
参考例句:
  • In an investigation,a new fact became known, which told against him.在调查中新发现了一件对他不利的事实。
  • He drew the conclusion by building on his own investigation.他根据自己的调查研究作出结论。
51 susceptible 4rrw7     
adj.过敏的,敏感的;易动感情的,易受感动的
参考例句:
  • Children are more susceptible than adults.孩子比成人易受感动。
  • We are all susceptible to advertising.我们都易受广告的影响。
52 hesitation tdsz5     
n.犹豫,踌躇
参考例句:
  • After a long hesitation, he told the truth at last.踌躇了半天,他终于直说了。
  • There was a certain hesitation in her manner.她的态度有些犹豫不决。
53 exertion F7Fyi     
n.尽力,努力
参考例句:
  • We were sweating profusely from the exertion of moving the furniture.我们搬动家具大费气力,累得大汗淋漓。
  • She was hot and breathless from the exertion of cycling uphill.由于用力骑车爬坡,她浑身发热。
54 ingenuity 77TxM     
n.别出心裁;善于发明创造
参考例句:
  • The boy showed ingenuity in making toys.那个小男孩做玩具很有创造力。
  • I admire your ingenuity and perseverance.我钦佩你的别出心裁和毅力。
55 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
56 specify evTwm     
vt.指定,详细说明
参考例句:
  • We should specify a time and a place for the meeting.我们应指定会议的时间和地点。
  • Please specify what you will do.请你详述一下你将做什么。
57 requisites 53bbbd0ba56c7698d40db5b2bdcc7c49     
n.必要的事物( requisite的名词复数 )
参考例句:
  • It is obvious that there are two requisites. 显然有两个必要部分。 来自辞典例句
  • Capacity of donor is one of the essential requisites of \"gift\". 赠与人的行为能力是\"赠与\"的一个重要前提。 来自口语例句
58 requisite 2W0xu     
adj.需要的,必不可少的;n.必需品
参考例句:
  • He hasn't got the requisite qualifications for the job.他不具备这工作所需的资格。
  • Food and air are requisite for life.食物和空气是生命的必需品。
59 conformity Hpuz9     
n.一致,遵从,顺从
参考例句:
  • Was his action in conformity with the law?他的行动是否合法?
  • The plan was made in conformity with his views.计划仍按他的意见制定。
60 demonstration 9waxo     
n.表明,示范,论证,示威
参考例句:
  • His new book is a demonstration of his patriotism.他写的新书是他的爱国精神的证明。
  • He gave a demonstration of the new technique then and there.他当场表演了这种新的操作方法。
61 undertaking Mfkz7S     
n.保证,许诺,事业
参考例句:
  • He gave her an undertaking that he would pay the money back with in a year.他向她做了一年内还钱的保证。
  • He is too timid to venture upon an undertaking.他太胆小,不敢从事任何事业。
62 extremities AtOzAr     
n.端点( extremity的名词复数 );尽头;手和足;极窘迫的境地
参考例句:
  • She was most noticeable, I thought, in respect of her extremities. 我觉得她那副穷极可怜的样子实在太惹人注目。 来自辞典例句
  • Winters may be quite cool at the northwestern extremities. 西北边区的冬天也可能会相当凉。 来自辞典例句
63 thereby Sokwv     
adv.因此,从而
参考例句:
  • I have never been to that city,,ereby I don't know much about it.我从未去过那座城市,因此对它不怎么熟悉。
  • He became a British citizen,thereby gaining the right to vote.他成了英国公民,因而得到了投票权。
64 dexterity hlXzs     
n.(手的)灵巧,灵活
参考例句:
  • You need manual dexterity to be good at video games.玩好电子游戏手要灵巧。
  • I'm your inferior in manual dexterity.论手巧,我不如你。
65 minors ff2adda56919f98e679a46d5a4ad4abb     
n.未成年人( minor的名词复数 );副修科目;小公司;[逻辑学]小前提v.[主美国英语]副修,选修,兼修( minor的第三人称单数 )
参考例句:
  • The law forbids shops to sell alcohol to minors. 法律禁止商店向未成年者出售含酒精的饮料。 来自《简明英汉词典》
  • He had three minors this semester. 这学期他有三门副修科目。 来自《简明英汉词典》
66 trifling SJwzX     
adj.微不足道的;没什么价值的
参考例句:
  • They quarreled over a trifling matter.他们为这种微不足道的事情争吵。
  • So far Europe has no doubt, gained a real conveniency,though surely a very trifling one.直到现在为止,欧洲无疑地已经获得了实在的便利,不过那确是一种微不足道的便利。
67 acoustics kJ2y6     
n.声学,(复)音响效果,音响装置
参考例句:
  • The acoustics of the new concert hall are excellent.这座新音乐厅的音响效果极好。
  • The auditorium has comfortable seating and modern acoustics.礼堂里有舒适的座椅和现代化的音响设备。
68 circuitous 5qzzs     
adj.迂回的路的,迂曲的,绕行的
参考例句:
  • They took a circuitous route to avoid reporters.他们绕道避开了记者。
  • The explanation was circuitous and puzzling.这个解释很迂曲,让人困惑不解。
69 proceeding Vktzvu     
n.行动,进行,(pl.)会议录,学报
参考例句:
  • This train is now proceeding from Paris to London.这次列车从巴黎开往伦敦。
  • The work is proceeding briskly.工作很有生气地进展着。
70 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
71 transformation SnFwO     
n.变化;改造;转变
参考例句:
  • Going to college brought about a dramatic transformation in her outlook.上大学使她的观念发生了巨大的变化。
  • He was struggling to make the transformation from single man to responsible husband.他正在努力使自己由单身汉变为可靠的丈夫。
72 opposition eIUxU     
n.反对,敌对
参考例句:
  • The party leader is facing opposition in his own backyard.该党领袖在自己的党內遇到了反对。
  • The police tried to break down the prisoner's opposition.警察设法制住了那个囚犯的反抗。
73 peculiar cinyo     
adj.古怪的,异常的;特殊的,特有的
参考例句:
  • He walks in a peculiar fashion.他走路的样子很奇特。
  • He looked at me with a very peculiar expression.他用一种很奇怪的表情看着我。
74 generic mgixr     
adj.一般的,普通的,共有的
参考例句:
  • I usually buy generic clothes instead of name brands.我通常买普通的衣服,不买名牌。
  • The generic woman appears to have an extraordinary faculty for swallowing the individual.一般妇女在婚后似乎有特别突出的抑制个性的能力。
75 generalizations 6a32b82d344d5f1487aee703a39bb639     
一般化( generalization的名词复数 ); 普通化; 归纳; 概论
参考例句:
  • But Pearlson cautions that the findings are simply generalizations. 但是波尔森提醒人们,这些发现是简单的综合资料。 来自英汉非文学 - 生命科学 - 大脑与疾病
  • They were of great service in correcting my jejune generalizations. 他们纠正了我不成熟的泛泛之论,帮了我大忙。
76 blues blues     
n.抑郁,沮丧;布鲁斯音乐
参考例句:
  • She was in the back of a smoky bar singing the blues.她在烟雾弥漫的酒吧深处唱着布鲁斯歌曲。
  • He was in the blues on account of his failure in business.他因事业失败而意志消沉。
77 indirectly a8UxR     
adv.间接地,不直接了当地
参考例句:
  • I heard the news indirectly.这消息我是间接听来的。
  • They were approached indirectly through an intermediary.通过一位中间人,他们进行了间接接触。
78 purely 8Sqxf     
adv.纯粹地,完全地
参考例句:
  • I helped him purely and simply out of friendship.我帮他纯粹是出于友情。
  • This disproves the theory that children are purely imitative.这证明认为儿童只会单纯地模仿的理论是站不住脚的。
79 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
80 anomalous MwbzI     
adj.反常的;不规则的
参考例句:
  • For years this anomalous behaviour has baffled scientists.几年来这种反常行为让科学家们很困惑。
  • The mechanism of this anomalous vascular response is unknown.此种不规则的血管反应的机制尚不清楚。
81 centripetal 1Ugyf     
adj.向心的
参考例句:
  • After some treatment of centripetal force,he deduces Kepler's third law.在向心力的一些论述之后,他推出了开普勒的第三定律。
  • It is called the centripetal acceleration.这叫做向心加速度。
82 inversely t4Sx6     
adj.相反的
参考例句:
  • Pressure varies directly with temperature and inversely with volume. 压力随温度成正比例变化,与容积成反比例变化。 来自《简明英汉词典》
  • The amount of force needed is inversely proportional to the rigidity of the material. 需要的力度与材料的硬度成反比。 来自《简明英汉词典》
83 transformations dfc3424f78998e0e9ce8980c12f60650     
n.变化( transformation的名词复数 );转换;转换;变换
参考例句:
  • Energy transformations go on constantly, all about us. 在我们周围,能量始终在不停地转换着。 来自辞典例句
  • On the average, such transformations balance out. 平均起来,这种转化可以互相抵消。 来自辞典例句
84 antagonistic pMPyn     
adj.敌对的
参考例句:
  • He is always antagonistic towards new ideas.他对新思想总是持反对态度。
  • They merely stirred in a nervous and wholly antagonistic way.他们只是神经质地,带着完全敌对情绪地骚动了一下。
85 phenomena 8N9xp     
n.现象
参考例句:
  • Ade couldn't relate the phenomena with any theory he knew.艾德无法用他所知道的任何理论来解释这种现象。
  • The object of these experiments was to find the connection,if any,between the two phenomena.这些实验的目的就是探索这两种现象之间的联系,如果存在着任何联系的话。
86 undoubtedly Mfjz6l     
adv.确实地,无疑地
参考例句:
  • It is undoubtedly she who has said that.这话明明是她说的。
  • He is undoubtedly the pride of China.毫无疑问他是中国的骄傲。
87 dynamics NuSzQq     
n.力学,动力学,动力,原动力;动态
参考例句:
  • In order to succeed,you must master complicated knowledge of dynamics.要取得胜利,你必须掌握很复杂的动力学知识。
  • Dynamics is a discipline that cannot be mastered without extensive practice.动力学是一门不做大量习题就不能掌握的学科。
88 elastic Tjbzq     
n.橡皮圈,松紧带;adj.有弹性的;灵活的
参考例句:
  • Rubber is an elastic material.橡胶是一种弹性材料。
  • These regulations are elastic.这些规定是有弹性的。
89 calculus Is9zM     
n.微积分;结石
参考例句:
  • This is a problem where calculus won't help at all.对于这一题,微积分一点也用不上。
  • After studying differential calculus you will be able to solve these mathematical problems.学了微积分之后,你们就能够解这些数学题了。
90 mathematicians bca28c194cb123ba0303d3afafc32cb4     
数学家( mathematician的名词复数 )
参考例句:
  • Do you suppose our mathematicians are unequal to that? 你以为我们的数学家做不到这一点吗? 来自英汉文学
  • Mathematicians can solve problems with two variables. 数学家们可以用两个变数来解决问题。 来自哲学部分
91 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
92 relatively bkqzS3     
adv.比较...地,相对地
参考例句:
  • The rabbit is a relatively recent introduction in Australia.兔子是相对较新引入澳大利亚的物种。
  • The operation was relatively painless.手术相对来说不痛。
93 conversant QZkyG     
adj.亲近的,有交情的,熟悉的
参考例句:
  • Mr.Taylor is thoroughly conversant with modern music.泰勒先生对现代音乐很精通。
  • We become the most conversant stranger in the world.我们变成了世界上最熟悉的陌生人。
94 tangible 4IHzo     
adj.有形的,可触摸的,确凿的,实际的
参考例句:
  • The policy has not yet brought any tangible benefits.这项政策还没有带来任何实质性的好处。
  • There is no tangible proof.没有确凿的证据。
95 subsists 256a862ff189725c560f521eddab1f11     
v.(靠很少的钱或食物)维持生活,生存下去( subsist的第三人称单数 )
参考例句:
  • This plant subsists in water holes only during the rainy season. 这种植物只有雨季在水坑里出现。 来自辞典例句
  • The hinge is that the enterprise subsists on suiting the development of data communication. 适应数据通信的发展是通信企业生存的关键。 来自互联网
96 vice NU0zQ     
n.坏事;恶习;[pl.]台钳,老虎钳;adj.副的
参考例句:
  • He guarded himself against vice.他避免染上坏习惯。
  • They are sunk in the depth of vice.他们堕入了罪恶的深渊。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533