小说搜索     点击排行榜   最新入库
首页 » 英文短篇小说 » The Earth's Beginning » CHAPTER XVI. THE THIRD CONCORD.
选择底色: 选择字号:【大】【中】【小】
CHAPTER XVI. THE THIRD CONCORD.
关注小说网官方公众号(noveltingroom),原版名著免费领。
 Rotations1 of the Planets on their Axes.—The Older Planets—No Information about Uranus3 or Neptune4 or the Asteroids5—The Speed of Rotation2 is Arbitrary so far as Kepler’s Laws are concerned—The Third Concord6—A Remarkable7 Unanimity8—Kant’s Argument—Illustration of the Rotation of the Moon on its Axis9—How the Nebular Theory explains the Rotation—The Moon’s Evolution—Special Action of Tides—The Evolution of the other Satellites—The case of Mars—Jupiter and Saturn11 as Miniatures of the Solar System—Uranus and Neptune offer Difficulties.
WE have seen in the last chapter how the rotation of the sun beat time, as it were, for the planets, by giving to them an indication of the direction in which the revolutions round the sun should be performed, and we have observed with what marvellous unanimity the planets follow the precept12 thus given. We have now to consider yet another concord, which has perhaps not the great numerical strength of that last considered, but is, nevertheless, worthy13 of our most special attention. The earth revolves15 about an axis which is not very far from being perpendicular16 to the principal plane to which the movements of the solar system are related. From a dynamical point of view it would, of course, have been equally possible for the earth to revolve14 325on its axis in the same direction as the rotation of the sun, or in the opposite direction. There is nothing so far as the welfare of man is concerned to make one direction of rotation preferable to the other, but, as a matter of fact, the earth does turn round in the same way as the sun turns.
 
Jupiter also turns on its axis, and Jupiter again, like the earth, might turn either with the sun or it might turn in the opposite direction. Here, again, we find a unanimity between the earth and Jupiter; they both turn in the same direction, and that is the direction in which the sun rotates. The same may be said of Mars, and the same may be said of Saturn. In the case of the planets Mercury and Venus we cannot speak with equal definiteness on the subject of their rotations about their axes. The circumstances of these planets are such that there are great difficulties attending the exact telescopic determination of their periods of rotation. The widest variations appear in the periods which have been assigned. It has, for instance, been believed that Venus rotates in a period not greatly differing from the period of twenty-four hours in which our earth revolves. But it has been lately supposed that the period of Venus is very much longer, and is in fact no less than seven months, which is, indeed, that of the revolution of Venus about the sun. According to this view, Venus rotates round the sun in a period equal to its revolution. If this be so, then Venus constantly turns the same face to the sun, and the movement of the planet would thus resemble the movement of the moon around the earth. As a matter of observation, the question must still be considered unsettled, though there are sound dynamical reasons for believing that the 326long period is much more probable than the short one. We do not now enter into this question, or into the still more difficult matter of the rotation of Mercury; it suffices to say that whichever period be adopted for either of these planets is really not material to our present argument. In both cases it has never been doubted that the direction of the rotation of the planets is the same as the direction in which Jupiter and Mars and the earth rotate, these being also the same as the direction of the solar rotation.
 
As to the rotations of Uranus and Neptune about their respective axes, the telescope can show us nothing. The remoteness of both these planets is such that we are unable to discern objects on their discs with the definiteness that would be required if we desired to watch their rotations. We have also no information as to the rotation of the several asteroids. No one, I think, will doubt that each of these small planets, equally with the large planets, does rotate about its axis; but it is impossible for us to say so from actual knowledge.
 
But undoubtedly17 the five old planets, Mercury, Venus, Mars, Jupiter, and Saturn, as well as the earth, all rotate in the same direction as the sun. Each planet might rotate twice as fast, or half as fast, as it does at present. They might all rotate in the opposite direction from that in which they do now, or some of them might go in one direction, and some in the other, with every variety in their diurnal18 periods, while the primary condition of Kepler’s Laws would have still been complied with. We may also note that the direction in which the rotation takes place seems quite immaterial so far as the welfare of the inhabitants on these planets is concerned.
 
327The fact that the planets and the sun have this third concord demands special attention. The chance that the earth should rotate in the same direction as the sun is, of course, expressed by one-half. It is easy to show, that out of sixty-four possible arrangements of the directions of rotation of the five planets and the earth, there would be only one in which all the movements coincided with the direction of the rotation of the sun. If, therefore, it had been by chance that the direction of these motions was determined20, then Nature would have taken a course of which the probability was only one sixty-fourth. No doubt this figure is by no means so large as those which expressed the probabilities of the other planetary concords22; it is, however, quite sufficient to convince us that the direction of the rotation of the planets on their axes has not been determined merely by the operation of chance.
 
We are to see if there is any physical agent by which the planets have been forced to turn round in the same direction. And here comes in one of those subtle points which the metaphysical genius of Kant suggested. Let us take any two planets—say, for instance, the earth and Jupiter—and let us endeavour to see what the nature of the agent must have been which has operated on these planets so as to make them both rotate in the same direction. Kant urged that there must have been some material agent working on the materials in Jupiter, and some material agent working on those of the earth, and that to produce the like effect in each planet there must have been at one time a material connection existing between that body which is now Jupiter and that body which is now the earth. In like manner Kant saw this material connection 328existing between the other planets and the sun, and thus he was led to see that the whole material of our solar system must once have formed a more or less continuous object. The argument is a delicate one, but it seems certainly true that in the present arrangement of the orbits it is impossible for us to conceive how, with intervals23 of empty space between the tracks of the planets, a common influence can have been exerted so as to give them all rotations in the same direction.
 
The nebular theory at once supplies the explanation of the unanimity in the rotation of the planets, just as it supplied the explanation of the unanimity in the directions of their revolutions. To explain the rotation of a planet on its axis, let us imagine that one portion of the contracting nebula10 has acquired exceptional density24. In virtue25 of its superior attraction it absorbs more and more material from the adjacent parts of the nebula, and this will ultimately be consolidated26 into the planet, though in its initial stages this contracting matter will remain part of the nebula. We have shown that the law which decrees that the moment of momentum27 must remain constant will require that, after a certain advance in the contraction28, all the parts of the nebula shall rotate in the same direction. Thus we find that the sun, or rather the parts of the nebula that are to form the sun, and the parts that are to form the planets are all turning round together.
 
 
Fig21. 51.—An elongated29 irregular Nebula (n.g.c. 6992; in Cygnus).
(Dr. W. E. Wilson, F.R.S.)
(From the Astronomical30 and Physical Researches at Daramona Observatory31.)
 
At this point we may consider a geometrical principle which, though really quite simple, is not always easily understood. It has indeed presented considerable difficulty to many people. Suppose that an ordinary card is laid on a flat board, and that, with 330a bradawl, a hole is made through the card into the board. The hole may be at the centre, or at one of the corners, or a little way in from one of the edges, or in any other position whatever on the card. Now suppose that a postage stamp is stuck upon the card anywhere, and that the card is then moved around the bradawl. How are we to describe the motion of that postage stamp? It would certainly be revolving32 around the bradawl; but this motion we may consider as composed of two others. At any instant we may accurately33 represent the movement of the postage stamp by considering that its centre was moving in a direction perpendicular to the line joining that centre to the hole made by the bradawl, and that it also had a rotation around its centre, the period of that rotation being just the same as the time the card would take to go round the bradawl. Thus we see that the movement of the postage stamp contains at any moment a movement of translation and a movement of rotation.
 
We may illustrate34 the case we have supposed by the movement of the moon around the earth. If the centre of the earth be considered to be at the centre of rotation the moon may be considered to be in the position of the postage stamp. As our satellite revolves, the same side of the moon is continually turned towards the earth, but this is due to the fact that the moon, at each moment, really possesses two movements, namely, a movement of translation of its centre, in a direction perpendicular to the line from the moon’s centre to the earth’s centre, coupled with a slow rotation of the moon round its axis.
 
The contracting nebula we may liken to our piece 331of cardboard, the stamp will represent the spot in which the nebulous material has contracted to form the planet, and the position of the bradawl is the centre of the sun. As we have seen by our illustration, the nebulous planet is endowed with a certain movement of rotation, the period of its rotation on its axis being equal to that of its revolution around the centre; and it is important also to notice that both these movements take place in the same direction.
 
Thus we see from the nebular theory how the prim19?val nebula, in the course of its contraction, originated a planet, and how that planet was also endowed with a movement of rotation; its period of rotation being originally equal to the period of rotation of the whole nebula. This explains how the planet, or rather the materials which are to form the future planet, derived35 from the nebula their movement of rotation, which must have been extremely slow in the beginning. As the contraction continued, the materials of the gradually growing globe drew themselves together, and tended to become separate from the surrounding nebula. At length the time arrived when the planet became sufficiently36 isolated37 from the rest of the nebula to permit the conservation of moment of momentum to be applied38 to it individually. Thus, though the rotation was at first excessively slow, yet, as the contraction proceeded, and as the parts of the forming planet drew themselves closer together, in consequence of their mutual39 attractions, it became necessary that the speed with which these parts accomplished40 their revolutions should be accelerated. At last, when the planet had become consolidated, and when consequently the mutual distances of the several 332particles constituting the planet had been reduced to but a fraction of what those distances were originally, the speed of the planet’s rotation had become enormously increased. In this manner we learn how, from the very slow rotation which the nebulous material had at first, a solid planet may be made to rotate on its axis as rapidly as the planets in the solar system do to-day.
 
We thus find that the third concord, namely, the agreement in the directions of the planets’ rotations, is a further strong corroboration41 of the nebular theory. The unanimity of all these various movements is the dominant42 characteristic of the solar system.
 
But this third concord, derived from the rotation of the planets, may be yet further strengthened. The movements of the satellites, which accompany so many of the planets, must also find their explanation from the prim?val nebula. The circumstances of the satellites are, however, different in the different cases.
 
As regards the moon, the theory of its evolution is now well known, mainly by the researches of Professor George Darwin. In the moon there appear to have been causes at work of a somewhat special kind. We must just refer to what is well known with regard to the history of the moon. Here, again, we observe the importance of the principles of the conservation of moment of momentum. As the moon raises tides on the ocean surrounding the earth, and as those tides flow around the globe, they cause friction43, and that friction involves, as we have so often pointed44 out, the loss of energy to the system. Thus, the energy of the earth-moon system must be declining, while the moment of momentum remains45 constant. Now there 333are only two sources from which the energy can be derived. One of those sources is that due to the rotation of the earth on its axis. The other is due to the moon, and consists of two parts, namely, the energy arising from the velocity46 of the moon in its orbit, and the energy due to the distance by which the earth is separated from the moon. As the moon’s velocity depends upon its distance, we cannot view these two portions as independent. They are connected together, and we associate them into one. So that we say the total energy of the earth-moon system consists partly of that due to the rotation of the earth on its axis, and partly of that due to the revolution of the moon around the earth. It might also seem that we ought to add to this the energy due to the rotation of the moon around its own axis; but this is too inconsiderable to need attention. In the first place, the moon is so small that even if it rotated as rapidly as the earth the energy due to the rotation would not be important. Seeing, however, that the moon has for the rotation on its axis a period of between twenty-seven and twenty-eight days, its velocity of rotation is so small that, for this reason also, the energy of rotation would be inconsiderable. We are, therefore, amply justified47 in omitting from our present consideration the energy due to the rotation of the moon on its axis.
 
The energy of the earth-moon system is on the decline: the lost energy might conceivably be drawn48 from the rotation of the earth, or it might be drawn from the revolution of the moon, or it might be drawn from both If it were drawn from the revolution of the moon, that would imply that the moon would lose some of its speed or some of its distance, or in any case that the 334moon would get nearer to the earth and revolve more slowly, the speed of the earth being on this supposition unaltered. In this case, the moment of momentum of the earth would remain the same as before, while the moment of momentum of the moon would be lessened49; the total moment of momentum would therefore have decreased, but this we have seen to be impossible. It therefore follows that the energy withdrawn50 from the earth-moon system is not to be obtained at the expense of the revolution of the moon.
 
The energy must therefore be obtained at the expense of the rotation of the earth on its axis. But if this be the case, the speed with which the earth rotates must be diminished; that is to say, the length of the day must be increased. And if the speed of the earth’s rotation be reduced, that means that the amount of moment of momentum contributed by the earth is lessened. But the total quantity of moment of momentum must be sustained, and this can only be done by making the moon go further away and describe a larger orbit. We thus see that in consequence of the tides the length of the day must be increasing, and the moon must be gradually retreating. Thus we find that at earlier periods the moon’s distance from the earth must have been less than it is at present, and the further we look back through remote periods the less do we find the distance between the earth and the moon. Thus we see that there must have been a time when the moon or the materials of the moon were in actual contact with the materials of the earth. In fact, it seems quite possible that the moon may have been a portion of the earth, broken off at some very early period, while the earth was still in a liquid state, if indeed it had 335condensed to even that extent. Thus the revolution of the moon round the earth is hardly to be used as an argument in favour of the nebular hypothesis. The moon is indeed a consequence of the earth’s rotation.
 
The satellites of Mars offer conditions of a very different kind, though here, again, tidal influences have been so important, that it is perhaps questions relating to tides that are illustrated51 by these satellites rather than the nebular theory.
 
A remarkable circumstance may be noted52 with regard to the movements of the satellites of Mars. The inner satellite has a period of about seven and a half hours, which is not a third of the period that the planet itself takes to go round on its axis. This leads to a somewhat curious consequence. The tides raised on Mars by this inner satellite would certainly tend rather to accelerate the rotation of the planet than to retard53 it; for these tides must course round the planet in the direction of its rotation, but with a speed in excess of that rotation. Any tidal friction, so far as this satellite is concerned, will tend to augment54 the velocity of the planet’s rotation, just as in the opposite case, where the moon raises tides on the earth, it is the lagging of the tides behind the movement due to the rotation that acts as a brake, and tends to check that speed. If, therefore. Mars is accelerated by this satellite, it will do more than its original share of the moment of momentum of the Martian system; it is therefore imperative55 that the satellite shall do less. Accordingly, we find that this satellite must go in towards the planet. No doubt this effect is much complicated by the influence of the other satellite of the same planet, but the illustration may suffice to show that if the satellites 336of the earth and Mars do not convey to us much direct evidence with regard to the nebular theory, this is largely because the effect of the tides has been a preponderating56 influence. The Martian system as we now see it has acquired its characteristic features by tidal influence, so that the more simple influences which would immediately illustrate the nebular theory have become hidden.
 
As to the satellites of Jupiter and Saturn, the circumstances are again quite different from those that we find in the earth and in Mars. There is little more to be said with regard to them than that everything that they present to us is consistent with the indications of the nebular theory. The evolution in each case has been a reproduction in miniature of the evolution of the solar system.
 
But the satellites of Uranus and Neptune present, it must be admitted, the greatest stumbling block to the acceptance of the nebular theory. Both as to the directions in which they move and as to the planes in which their orbits lie, it must be admitted that the satellites of Uranus are distinctly at variance57 with what the nebular theory would suggest. The consideration of this subject will be found in the next chapter.

点击收听单词发音收听单词发音  

1 rotations d52e30a99086786b005c11c05b280215     
旋转( rotation的名词复数 ); 转动; 轮流; 轮换
参考例句:
  • Farmers traditionally used long-term rotations of hay, pasture, and corn. 农民以往长期实行干草、牧草和玉米轮作。
  • The crankshaft makes three rotations for each rotation of the rotor. 转子每转一周,曲轴转3周。
2 rotation LXmxE     
n.旋转;循环,轮流
参考例句:
  • Crop rotation helps prevent soil erosion.农作物轮作有助于防止水土流失。
  • The workers in this workshop do day and night shifts in weekly rotation.这个车间的工人上白班和上夜班每周轮换一次。
3 Uranus 3pZyA     
n.天王星
参考例句:
  • Uranus is unusual because it is tilted.天王星非常特殊,因为它是倾斜的。
  • Uranus represents sudden change and rebellion.天王星代表突然性的改变和反叛。
4 Neptune LNezw     
n.海王星
参考例句:
  • Neptune is the furthest planet from the sun.海王星是离太阳最远的行星。
  • Neptune turned out to be a dynamic,stormy world.海王星原来是个有生气、多风暴的世界。
5 asteroids d02ebba086eb60b6155b94e12649ff84     
n.小行星( asteroid的名词复数 );海盘车,海星
参考例句:
  • Asteroids,also known as "minor planets",are numerous in the outer space. 小行星,亦称为“小型行星”,在外太空中不计其数。
  • Most stars probably have their quota of planets, meteorids, comets, and asteroids. 多数恒星也许还拥有若干行星、流星、彗星和小行星。
6 concord 9YDzx     
n.和谐;协调
参考例句:
  • These states had lived in concord for centuries.这些国家几个世纪以来一直和睦相处。
  • His speech did nothing for racial concord.他的讲话对种族和谐没有作用。
7 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
8 unanimity uKWz4     
n.全体一致,一致同意
参考例句:
  • These discussions have led to a remarkable unanimity.这些讨论导致引人注目的一致意见。
  • There is no unanimity of opinion as to the best one.没有一个公认的最好意见。
9 axis sdXyz     
n.轴,轴线,中心线;坐标轴,基准线
参考例句:
  • The earth's axis is the line between the North and South Poles.地轴是南北极之间的线。
  • The axis of a circle is its diameter.圆的轴线是其直径。
10 nebula E55zw     
n.星云,喷雾剂
参考例句:
  • A powerful telescope can resolve a nebula into stars.一架高性能的望远镜能从星云中分辨出星球来。
  • A nebula is really a discrete mass of innumerous stars.一团星云实际上是无数星体不连续的集合体。
11 Saturn tsZy1     
n.农神,土星
参考例句:
  • Astronomers used to ask why only Saturn has rings.天文学家们过去一直感到奇怪,为什么只有土星有光环。
  • These comparisons suggested that Saturn is made of lighter materials.这些比较告诉我们,土星由较轻的物质构成。
12 precept VPox5     
n.戒律;格言
参考例句:
  • It occurs to me that example is always more efficacious than precept.我想到身教重于言教。
  • The son had well profited by the precept and example of the father.老太爷的言传身教早已使他儿子获益无穷。
13 worthy vftwB     
adj.(of)值得的,配得上的;有价值的
参考例句:
  • I did not esteem him to be worthy of trust.我认为他不值得信赖。
  • There occurred nothing that was worthy to be mentioned.没有值得一提的事发生。
14 revolve NBBzX     
vi.(使)旋转;循环出现
参考例句:
  • The planets revolve around the sun.行星绕着太阳运转。
  • The wheels began to revolve slowly.车轮开始慢慢转动。
15 revolves 63fec560e495199631aad0cc33ccb782     
v.(使)旋转( revolve的第三人称单数 );细想
参考例句:
  • The earth revolves both round the sun and on its own axis. 地球既公转又自转。 来自《现代汉英综合大词典》
  • Thus a wheel revolves on its axle. 于是,轮子在轴上旋转。 来自《简明英汉词典》
16 perpendicular GApy0     
adj.垂直的,直立的;n.垂直线,垂直的位置
参考例句:
  • The two lines of bones are set perpendicular to one another.这两排骨头相互垂直。
  • The wall is out of the perpendicular.这墙有些倾斜。
17 undoubtedly Mfjz6l     
adv.确实地,无疑地
参考例句:
  • It is undoubtedly she who has said that.这话明明是她说的。
  • He is undoubtedly the pride of China.毫无疑问他是中国的骄傲。
18 diurnal ws5xi     
adj.白天的,每日的
参考例句:
  • Kangaroos are diurnal animals.袋鼠是日间活动的动物。
  • Over water the diurnal change in refraction is likely to be small. 在水面上,折光的周日变化可能是很小的。
19 prim SSIz3     
adj.拘泥形式的,一本正经的;n.循规蹈矩,整洁;adv.循规蹈矩地,整洁地
参考例句:
  • She's too prim to enjoy rude jokes!她太古板,不喜欢听粗野的笑话!
  • He is prim and precise in manner.他的态度一本正经而严谨
20 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
21 fig L74yI     
n.无花果(树)
参考例句:
  • The doctor finished the fig he had been eating and selected another.这位医生吃完了嘴里的无花果,又挑了一个。
  • You can't find a person who doesn't know fig in the United States.你找不到任何一个在美国的人不知道无花果的。
22 concords b922aad9d5bcc47b9212338ed0c27103     
n.和谐,一致,和睦( concord的名词复数 )
参考例句:
23 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
24 density rOdzZ     
n.密集,密度,浓度
参考例句:
  • The population density of that country is 685 per square mile.那个国家的人口密度为每平方英里685人。
  • The region has a very high population density.该地区的人口密度很高。
25 virtue BpqyH     
n.德行,美德;贞操;优点;功效,效力
参考例句:
  • He was considered to be a paragon of virtue.他被认为是品德尽善尽美的典范。
  • You need to decorate your mind with virtue.你应该用德行美化心灵。
26 consolidated dv3zqt     
a.联合的
参考例句:
  • With this new movie he has consolidated his position as the country's leading director. 他新执导的影片巩固了他作为全国最佳导演的地位。
  • Those two banks have consolidated and formed a single large bank. 那两家银行已合并成一家大银行。
27 momentum DjZy8     
n.动力,冲力,势头;动量
参考例句:
  • We exploit the energy and momentum conservation laws in this way.我们就是这样利用能量和动量守恒定律的。
  • The law of momentum conservation could supplant Newton's third law.动量守恒定律可以取代牛顿第三定律。
28 contraction sn6yO     
n.缩略词,缩写式,害病
参考例句:
  • The contraction of this muscle raises the lower arm.肌肉的收缩使前臂抬起。
  • The forces of expansion are balanced by forces of contraction.扩张力和收缩力相互平衡。
29 elongated 6a3aeff7c3bf903f4176b42850937718     
v.延长,加长( elongate的过去式和过去分词 )
参考例句:
  • Modigliani's women have strangely elongated faces. 莫迪里阿尼画中的妇女都长着奇长无比的脸。
  • A piece of rubber can be elongated by streching. 一块橡皮可以拉长。 来自《用法词典》
30 astronomical keTyO     
adj.天文学的,(数字)极大的
参考例句:
  • He was an expert on ancient Chinese astronomical literature.他是研究中国古代天文学文献的专家。
  • Houses in the village are selling for astronomical prices.乡村的房价正在飙升。
31 observatory hRgzP     
n.天文台,气象台,瞭望台,观测台
参考例句:
  • Guy's house was close to the observatory.盖伊的房子离天文台很近。
  • Officials from Greenwich Observatory have the clock checked twice a day.格林威治天文台的职员们每天对大钟检查两次。
32 revolving 3jbzvd     
adj.旋转的,轮转式的;循环的v.(使)旋转( revolve的现在分词 );细想
参考例句:
  • The theatre has a revolving stage. 剧院有一个旋转舞台。
  • The company became a revolving-door workplace. 这家公司成了工作的中转站。
33 accurately oJHyf     
adv.准确地,精确地
参考例句:
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
34 illustrate IaRxw     
v.举例说明,阐明;图解,加插图
参考例句:
  • The company's bank statements illustrate its success.这家公司的银行报表说明了它的成功。
  • This diagram will illustrate what I mean.这个图表可说明我的意思。
35 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
36 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
37 isolated bqmzTd     
adj.与世隔绝的
参考例句:
  • His bad behaviour was just an isolated incident. 他的不良行为只是个别事件。
  • Patients with the disease should be isolated. 这种病的患者应予以隔离。
38 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
39 mutual eFOxC     
adj.相互的,彼此的;共同的,共有的
参考例句:
  • We must pull together for mutual interest.我们必须为相互的利益而通力合作。
  • Mutual interests tied us together.相互的利害关系把我们联系在一起。
40 accomplished UzwztZ     
adj.有才艺的;有造诣的;达到了的
参考例句:
  • Thanks to your help,we accomplished the task ahead of schedule.亏得你们帮忙,我们才提前完成了任务。
  • Removal of excess heat is accomplished by means of a radiator.通过散热器完成多余热量的排出。
41 corroboration vzoxo     
n.进一步的证实,进一步的证据
参考例句:
  • Without corroboration from forensic tests,it will be difficult to prove that the suspect is guilty. 没有法医化验的确证就很难证明嫌疑犯有罪。 来自《简明英汉词典》
  • Definitely more independent corroboration is necessary. 有必要更明确地进一步证实。 来自辞典例句
42 dominant usAxG     
adj.支配的,统治的;占优势的;显性的;n.主因,要素,主要的人(或物);显性基因
参考例句:
  • The British were formerly dominant in India.英国人从前统治印度。
  • She was a dominant figure in the French film industry.她在法国电影界是个举足轻重的人物。
43 friction JQMzr     
n.摩擦,摩擦力
参考例句:
  • When Joan returned to work,the friction between them increased.琼回来工作后,他们之间的摩擦加剧了。
  • Friction acts on moving bodies and brings them to a stop.摩擦力作用于运动着的物体,并使其停止。
44 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
45 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
46 velocity rLYzx     
n.速度,速率
参考例句:
  • Einstein's theory links energy with mass and velocity of light.爱因斯坦的理论把能量同质量和光速联系起来。
  • The velocity of light is about 300000 kilometres per second.光速约为每秒300000公里。
47 justified 7pSzrk     
a.正当的,有理的
参考例句:
  • She felt fully justified in asking for her money back. 她认为有充分的理由要求退款。
  • The prisoner has certainly justified his claims by his actions. 那个囚犯确实已用自己的行动表明他的要求是正当的。
48 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
49 lessened 6351a909991322c8a53dc9baa69dda6f     
减少的,减弱的
参考例句:
  • Listening to the speech through an interpreter lessened its impact somewhat. 演讲辞通过翻译的嘴说出来,多少削弱了演讲的力量。
  • The flight to suburbia lessened the number of middle-class families living within the city. 随着迁往郊外的风行,住在城内的中产家庭减少了。
50 withdrawn eeczDJ     
vt.收回;使退出;vi.撤退,退出
参考例句:
  • Our force has been withdrawn from the danger area.我们的军队已从危险地区撤出。
  • All foreign troops should be withdrawn to their own countries.一切外国军队都应撤回本国去。
51 illustrated 2a891807ad5907f0499171bb879a36aa     
adj. 有插图的,列举的 动词illustrate的过去式和过去分词
参考例句:
  • His lecture was illustrated with slides taken during the expedition. 他在讲演中使用了探险时拍摄到的幻灯片。
  • The manufacturing Methods: Will be illustrated in the next chapter. 制作方法将在下一章说明。
52 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
53 retard 8WWxE     
n.阻止,延迟;vt.妨碍,延迟,使减速
参考例句:
  • Lack of sunlight will retard the growth of most plants.缺乏阳光会妨碍大多数植物的生长。
  • Continuing violence will retard negotiations over the country's future.持续不断的暴力活动会阻碍关系到国家未来的谈判的进行。
54 augment Uuozw     
vt.(使)增大,增加,增长,扩张
参考例句:
  • They hit upon another idea to augment their income.他们又想出一个增加收入的办法。
  • The government's first concern was to augment the army and auxiliary forces.政府首先关心的是增强军队和辅助的力量。
55 imperative BcdzC     
n.命令,需要;规则;祈使语气;adj.强制的;紧急的
参考例句:
  • He always speaks in an imperative tone of voice.他老是用命令的口吻讲话。
  • The events of the past few days make it imperative for her to act.过去这几天发生的事迫使她不得不立即行动。
56 preponderating 45e11c57fa78b54a4632bbb1b71e5b3e     
v.超过,胜过( preponderate的现在分词 )
参考例句:
57 variance MiXwb     
n.矛盾,不同
参考例句:
  • The question of woman suffrage sets them at variance. 妇女参政的问题使他们发生争执。
  • It is unnatural for brothers to be at variance. 兄弟之间不睦是不近人情的。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533