Chapter 3
The Notion of Space
1. Introduction
In the articles I have heretofore devoted1 to space I have above all emphasized the problems raised by non-Euclidean geometry, while leaving almost completely aside other questions more difficult of approach, such as those which pertain2 to the number of dimensions. All the geometries I considered had thus a common basis, that tridimensional continuum which was the same for all and which differentiated3 itself only by the figures one drew in it or when one aspired4 to measure it.
In this continuum, primitively5 amorphous7, we may imagine a network of lines and surfaces, we may then convene8 to regard the meshes9 of this net as equal to one another, and it is only after this convention that this continuum, become measurable, becomes Euclidean or non-Euclidean space. From this amorphous continuum can therefore arise indifferently one or the other of the two spaces, just as on a blank sheet of paper may be traced indifferently a straight or a circle.
In space we know rectilinear triangles the sum of whose angles is equal to two right angles; but equally we know curvilinear triangles the sum of whose angles is less than two right angles. The existence of the one sort is not more doubtful than that of the other. To give the name of straights to the sides of the first is to adopt Euclidean geometry; to give the name of straights to the sides of the latter is to adopt the non-Euclidean geometry. So that to ask what geometry it is proper to adopt is to ask, to what line is it proper to give the name straight?
It is evident that experiment can not settle such a question; one would not ask, for instance, experiment to decide whether I should call AB or CD a straight. On the other hand, neither can I say that I have not the right to give the name of straights to the sides of non-Euclidean triangles because they are not in conformity10 with the eternal idea of straight which I have by intuition. I grant, indeed, that I have the intuitive idea of the side of the Euclidean triangle, but I have equally the intuitive idea of the side of the non-Euclidean triangle. Why should I have the right to apply the name of straight to the first of these ideas and not to the second? Wherein does this syllable11 form an integrant part of this intuitive idea? Evidently when we say that the Euclidean straight is a true straight and that the non-Euclidean straight is not a true straight, we simply mean that the first intuitive idea corresponds to a more noteworthy object than the second. But how do we decide that this object is more noteworthy? This question I have investigated in ‘Science and Hypothesis.’
It is here that we saw experience come in. If the Euclidean straight is more noteworthy than the non-Euclidean straight, it is so chiefly because it differs little from certain noteworthy natural objects from which the non-Euclidean straight differs greatly. But, it will be said, the definition of the non-Euclidean straight is artificial; if we for a moment adopt it, we shall see that two circles of different radius12 both receive the name of non-Euclidean straights, while of two circles of the same radius one can satisfy the definition without the other being able to satisfy it, and then if we transport one of these so-called straights without deforming13 it, it will cease to be a straight. But by what right do we consider as equal these two figures which the Euclidean geometers call two circles with the same radius? It is because by transporting one of them without deforming it we can make it coincide with the other. And why do we say this transportation is effected without deformation14? It is impossible to give a good reason for it. Among all the motions conceivable, there are some of which the Euclidean geometers say that they are not accompanied by deformation; but there are others of which the non-Euclidean geometers would say that they are not accompanied by deformation. In the first, called Euclidean motions, the Euclidean straights remain Euclidean straights and the non-Euclidean straights do not remain non-Euclidean straights; in the motions of the second sort, or non-Euclidean motions, the non-Euclidean straights remain non-Euclidean straights and the Euclidean straights do not remain Euclidean straights. It has, therefore, not been demonstrated that it was unreasonable15 to call straights the sides of non-Euclidean triangles; it has only been shown that that would be unreasonable if one continued to call the Euclidean motions motions without deformation; but it has at the same time been shown that it would be just as unreasonable to call straights the sides of Euclidean triangles if the non-Euclidean motions were called motions without deformation.
Now when we say that the Euclidean motions are the true motions without deformation, what do we mean? We simply mean that they are more noteworthy than the others. And why are they more noteworthy? It is because certain noteworthy natural bodies, the solid bodies, undergo motions almost similar.
And then when we ask: Can one imagine non-Euclidean space? That means: Can we imagine a world where there would be noteworthy natural objects affecting almost the form of non-Euclidean straights, and noteworthy natural bodies frequently undergoing motions almost similar to the non-Euclidean motions? I have shown in ‘Science and Hypothesis’ that to this question we must answer yes.
It has often been observed that if all the bodies in the universe were dilated16 simultaneously17 and in the same proportion, we should have no means of perceiving it, since all our measuring instruments would grow at the same time as the objects themselves which they serve to measure. The world, after this dilatation, would continue on its course without anything apprising18 us of so considerable an event. In other words, two worlds similar to one another (understanding the word similitude in the sense of Euclid, Book VI.) would be absolutely indistinguishable. But more; worlds will be indistinguishable not only if they are equal or similar, that is, if we can pass from one to the other by changing the axes of coordinates20, or by changing the scale to which lengths are referred; but they will still be indistinguishable if we can pass from one to the other by any ‘point-transformation’ whatever. I will explain my meaning. I suppose that to each point of one corresponds one point of the other and only one, and inversely21; and besides that the coordinates of a point are continuous functions, otherwise altogether arbitrary, of the corresponding point. I suppose besides that to each object of the first world corresponds in the second an object of the same nature placed precisely22 at the corresponding point. I suppose finally that this correspondence fulfilled at the initial instant is maintained indefinitely. We should have no means of distinguishing these two worlds one from the other. The relativity of space is not ordinarily understood in so broad a sense; it is thus, however, that it would be proper to understand it.
If one of these universes is our Euclidean world, what its inhabitants will call straight will be our Euclidean straight; but what the inhabitants of the second world will call straight will be a curve which will have the same properties in relation to the world they inhabit and in relation to the motions that they will call motions without deformation. Their geometry will, therefore, be Euclidean geometry, but their straight will not be our Euclidean straight. It will be its transform by the point-transformation which carries over from our world to theirs. The straights of these men will not be our straights, but they will have among themselves the same relations as our straights to one another. It is in this sense I say their geometry will be ours. If then we wish after all to proclaim that they deceive themselves, that their straight is not the true straight, if we still are unwilling23 to admit that such an affirmation has no meaning, at least we must confess that these people have no means whatever of recognizing their error.
2. Qualitative24 Geometry
All that is relatively25 easy to understand, and I have already so often repeated it that I think it needless to expatiate26 further on the matter. Euclidean space is not a form imposed upon our sensibility, since we can imagine non-Euclidean space; but the two spaces, Euclidean and non-Euclidean, have a common basis, that amorphous continuum of which I spoke27 in the beginning. From this continuum we can get either Euclidean space or Lobachevskian space, just as we can, by tracing upon it a proper graduation, transform an ungraduated thermometer into a Fahrenheit28 or a Réaumur thermometer.
And then comes a question: Is not this amorphous continuum, that our analysis has allowed to survive, a form imposed upon our sensibility? If so, we should have enlarged the prison in which this sensibility is confined, but it would always be a prison.
This continuum has a certain number of properties, exempt29 from all idea of measurement. The study of these properties is the object of a science which has been cultivated by many great geometers and in particular by Riemann and Betti and which has received the name of analysis situs. In this science abstraction is made of every quantitative30 idea and, for example, if we ascertain31 that on a line the point B is between the points A and C, we shall be content with this ascertainment32 and shall not trouble to know whether the line ABC is straight or curved, nor whether the length AB is equal to the length BC, or whether it is twice as great.
The theorems of analysis situs have, therefore, this peculiarity33, that they would remain true if the figures were copied by an inexpert draftsman who should grossly change all the proportions and replace the straights by lines more or less sinuous34. In mathematical terms, they are not altered by any ‘point-transformation’ whatsoever35. It has often been said that metric geometry was quantitative, while projective geometry was purely36 qualitative. That is not altogether true. The straight is still distinguished37 from other lines by properties which remain quantitative in some respects. The real qualitative geometry is, therefore, analysis situs.
The same questions which came up apropos38 of the truths of Euclidean geometry, come up anew apropos of the theorems of analysis situs. Are they obtainable by deductive reasoning? Are they disguised conventions? Are they experimental verities39? Are they the characteristics of a form imposed either upon our sensibility or upon our understanding?
I wish simply to observe that the last two solutions exclude each other. We can not admit at the same time that it is impossible to imagine space of four dimensions and that experience proves to us that space has three dimensions. The experimenter puts to nature a question: Is it this or that? and he can not put it without imagining the two terms of the alternative. If it were impossible to imagine one of these terms, it would be futile40 and besides impossible to consult experience. There is no need of observation to know that the hand of a watch is not marking the hour 15 on the dial, because we know beforehand that there are only 12, and we could not look at the mark 15 to see if the hand is there, because this mark does not exist.
Note likewise that in analysis situs the empiricists are disembarrassed of one of the gravest objections that can be leveled against them, of that which renders absolutely vain in advance all their efforts to apply their thesis to the verities of Euclidean geometry. These verities are rigorous and all experimentation41 can only be approximate. In analysis situs approximate experiments may suffice to give a rigorous theorem and, for instance, if it is seen that space can not have either two or less than two dimensions, nor four or more than four, we are certain that it has exactly three, since it could not have two and a half or three and a half.
Of all the theorems of analysis situs, the most important is that which is expressed in saying that space has three dimensions. This it is that we are about to consider, and we shall put the question in these terms: When we say that space has three dimensions, what do we mean?
3. The Physical Continuum of Several Dimensions
I have explained in ‘Science and Hypothesis’ whence we derive42 the notion of physical continuity and how that of mathematical continuity has arisen from it. It happens that we are capable of distinguishing two impressions one from the other, while each is indistinguishable from a third. Thus we can readily distinguish a weight of 12 grams from a weight of 10 grams, while a weight of 11 grams could be distinguished from neither the one nor the other. Such a statement, translated into symbols, may be written:
A = B, B = C, A < C.
This would be the formula of the physical continuum, as crude experience gives it to us, whence arises an intolerable contradiction that has been obviated43 by the introduction of the mathematical continuum. This is a scale of which the steps (commensurable or incommensurable numbers) are infinite in number but are exterior44 to one another, instead of encroaching on one another as do the elements of the physical continuum, in conformity with the preceding formula.
The physical continuum is, so to speak, a nebula45 not resolved; the most perfect instruments could not attain46 to its resolution. Doubtless if we measured the weights with a good balance instead of judging them by the hand, we could distinguish the weight of 11 grams from those of 10 and 12 grams, and our formula would become:
A < B, B < C, A < C.
But we should always find between A and B and between B and C new elements D and E, such that
A = D, D = B, A < B; B = E, E = C, B < C,
and the difficulty would only have receded47 and the nebula would always remain unresolved; the mind alone can resolve it and the mathematical continuum it is which is the nebula resolved into stars.
Yet up to this point we have not introduced the notion of the number of dimensions. What is meant when we say that a mathematical continuum or that a physical continuum has two or three dimensions?
First we must introduce the notion of cut, studying first physical continua. We have seen what characterizes the physical continuum. Each of the elements of this continuum consists of a manifold of impressions; and it may happen either that an element can not be discriminated49 from another element of the same continuum, if this new element corresponds to a manifold of impressions not sufficiently50 different, or, on the contrary, that the discrimination is possible; finally it may happen that two elements indistinguishable from a third may, nevertheless, be distinguished one from the other.
That postulated51, if A and B are two distinguishable elements of a continuum C, a series of elements may be found, E1, E2, . . ., En, all belonging to this same continuum C and such that each of them is indistinguishable from the preceding, that E1 is indistinguishable from A, and En indistinguishable from B. Therefore we can go from A to B by a continuous route and without quitting C. If this condition is fulfilled for any two elements A and B of the continuum C, we may say that this continuum C is all in one piece. Now let us distinguish certain of the elements of C which may either be all distinguishable from one another, or themselves form one or several continua. The assemblage of the elements thus chosen arbitrarily among all those of C will form what I shall call the cut or the cuts.
Take on C any two elements A and B. Either we can also find a series of elements E1, E2, . . ., En, such: (1) that they all belong to C; (2) that each of them is indistinguishable from the following, E1 indistinguishable from A and En from B; (3) and besides that none of the elements E is indistinguishable from any element of the cut. Or else, on the contrary, in each of the series E1, E2, . . ., En satisfying the first two conditions, there will be an element E indistinguishable from one of the elements of the cut. In the first case we can go from A to B by a continuous route without quitting C and without meeting the cuts; in the second case that is impossible.
If then for any two elements A and B of the continuum C, it is always the first case which presents itself, we shall say that C remains52 all in one piece despite the cuts.
Thus, if we choose the cuts in a certain way, otherwise arbitrary, it may happen either that the continuum remains all in one piece or that it does not remain all in one piece; in this latter hypothesis we shall then say that it is divided by the cuts.
It will be noticed that all these definitions are constructed in setting out solely53 from this very simple fact, that two manifolds of impressions sometimes can be discriminated, sometimes can not be. That postulated, if, to divide a continuum, it suffices to consider as cuts a certain number of elements all distinguishable from one another, we say that this continuum is of one dimension; if, on the contrary, to divide a continuum, it is necessary to consider as cuts a system of elements themselves forming one or several continua, we shall say that this continuum is of several dimensions.
If to divide a continuum C, cuts forming one or several continua of one dimension suffice, we shall say that C is a continuum of two dimensions; if cuts suffice which form one or several continua of two dimensions at most, we shall say that C is a continuum of three dimensions; and so on.
To justify54 this definition it is proper to see whether it is in this way that geometers introduce the notion of three dimensions at the beginning of their works. Now, what do we see? Usually they begin by defining surfaces as the boundaries of solids or pieces of space, lines as the boundaries of surfaces, points as the boundaries of lines, and they affirm that the same procedure can not be pushed further.
This is just the idea given above: to divide space, cuts that are called surfaces are necessary; to divide surfaces, cuts that are called lines are necessary; to divide lines, cuts that are called points are necessary; we can go no further, the point can not be divided, so the point is not a continuum. Then lines which can be divided by cuts which are not continua will be continua of one dimension; surfaces which can be divided by continuous cuts of one dimension will be continua of two dimensions; finally, space which can be divided by continuous cuts of two dimensions will be a continuum of three dimensions.
Thus the definition I have just given does not differ essentially55 from the usual definitions; I have only endeavored to give it a form applicable not to the mathematical continuum, but to the physical continuum, which alone is susceptible56 of representation, and yet to retain all its precision. Moreover, we see that this definition applies not alone to space; that in all which falls under our senses we find the characteristics of the physical continuum, which would allow of the same classification; that it would be easy to find there examples of continua of four, of five, dimensions, in the sense of the preceding definition; such examples occur of themselves to the mind.
I should explain finally, if I had the time, that this science, of which I spoke above and to which Riemann gave the name of analysis situs, teaches us to make distinctions among continua of the same number of dimensions and that the classification of these continua rests also on the consideration of cuts.
From this notion has arisen that of the mathematical continuum of several dimensions in the same way that the physical continuum of one dimension engendered57 the mathematical continuum of one dimension. The formula
A > C, A = B, B = C,
which summed up the data of crude experience, implied an intolerable contradiction. To get free from it, it was necessary to introduce a new notion while still respecting the essential characteristics of the physical continuum of several dimensions. The mathematical continuum of one dimension admitted of a scale whose divisions, infinite in number, corresponded to the different values, commensurable or not, of one same magnitude. To have the mathematical continuum of n dimensions, it will suffice to take n like scales whose divisions correspond to different values of n independent magnitudes called coordinates. We thus shall have an image of the physical continuum of n dimensions, and this image will be as faithful as it can be after the determination not to allow the contradiction of which I spoke above.
4. The Notion of Point
It seems now that the question we put to ourselves at the start is answered. When we say that space has three dimensions, it will be said, we mean that the manifold of points of space satisfies the definition we have just given of the physical continuum of three dimensions. To be content with that would be to suppose that we know what is the manifold of points of space, or even one point of space.
Now that is not as simple as one might think. Every one believes he knows what a point is, and it is just because we know it too well that we think there is no need of defining it. Surely we can not be required to know how to define it, because in going back from definition to definition a time must come when we must stop. But at what moment should we stop?
We shall stop first when we reach an object which falls under our senses or that we can represent to ourselves; definition then will become useless; we do not define the sheep to a child; we say to him: See the sheep.
So, then, we should ask ourselves if it is possible to represent to ourselves a point of space. Those who answer yes do not reflect that they represent to themselves in reality a white spot made with the chalk on a blackboard or a black spot made with a pen on white paper, and that they can represent to themselves only an object or rather the impressions that this object made on their senses.
When they try to represent to themselves a point, they represent the impressions that very little objects made them feel. It is needless to add that two different objects, though both very little, may produce extremely different impressions, but I shall not dwell on this difficulty, which would still require some discussion.
But it is not a question of that; it does not suffice to represent one point, it is necessary to represent a certain point and to have the means of distinguishing it from an other point. And in fact, that we may be able to apply to a continuum the rule I have above expounded58 and by which one may recognize the number of its dimensions, we must rely upon the fact that two elements of this continuum sometimes can and sometimes can not be distinguished. It is necessary therefore that we should in certain cases know how to represent to ourselves a specific element and to distinguish it from an other element.
The question is to know whether the point that I represented to myself an hour ago is the same as this that I now represent to myself, or whether it is a different point. In other words, how do we know whether the point occupied by the object A at the instant α is the same as the point occupied by the object B at the instant β, or still better, what this means?
I am seated in my room; an object is placed on my table; during a second I do not move, no one touches the object. I am tempted59 to say that the point A which this object occupied at the beginning of this second is identical with the point B which it occupies at its end. Not at all; from the point A to the point B is 30 kilometers, because the object has been carried along in the motion of the earth. We can not know whether an object, be it large or small, has not changed its absolute position in space, and not only can we not affirm it, but this affirmation has no meaning and in any case can not correspond to any representation.
But then we may ask ourselves if the relative position of an object with regard to other objects has changed or not, and first whether the relative position of this object with regard to our body has changed. If the impressions this object makes upon us have not changed, we shall be inclined to judge that neither has this relative position changed; if they have changed, we shall judge that this object has changed either in state or in relative position. It remains to decide which of the two. I have explained in ‘Science and Hypothesis’ how we have been led to distinguish the changes of position. Moreover, I shall return to that further on. We come to know, therefore, whether the relative position of an object with regard to our body has or has not remained the same.
If now we see that two objects have retained their relative position with regard to our body, we conclude that the relative position of these two objects with regard to one another has not changed; but we reach this conclusion only by indirect reasoning. The only thing that we know directly is the relative position of the objects with regard to our body. A fortiori it is only by indirect reasoning that we think we know (and, moreover, this belief is delusive) whether the absolute position of the object has changed.
In a word, the system of coordinate19 axes to which we naturally refer all exterior objects is a system of axes invariably bound to our body, and carried around with us.
It is impossible to represent to oneself absolute space; when I try to represent to myself simultaneously objects and myself in motion in absolute space, in reality I represent to myself my own self motionless and seeing move around me different objects and a man that is exterior to me, but that I convene to call me.
Will the difficulty be solved if we agree to refer everything to these axes bound to our body? Shall we know then what is a point thus defined by its relative position with regard to ourselves? Many persons will answer yes and will say that they ‘localize’ exterior objects.
What does this mean? To localize an object simply means to represent to oneself the movements that would be necessary to reach it. I will explain myself. It is not a question of representing the movements themselves in space, but solely of representing to oneself the muscular sensations which accompany these movements and which do not presuppose the preexistence of the notion of space.
If we suppose two different objects which successively occupy the same relative position with regard to ourselves, the impressions that these two objects make upon us will be very different; if we localize them at the same point, this is simply because it is necessary to make the same movements to reach them; apart from that, one can not just see what they could have in common.
But, given an object, we can conceive many different series of movements which equally enable us to reach it. If then we represent to ourselves a point by representing to ourselves the series of muscular sensations which accompany the movements which enable us to reach this point, there will be many ways entirely60 different of representing to oneself the same point. If one is not satisfied with this solution, but wishes, for instance, to bring in the visual sensations along with the muscular sensations, there will be one or two more ways of representing to oneself this same point and the difficulty will only be increased. In any case the following question comes up: Why do we think that all these representations so different from one another still represent the same point?
Another remark: I have just said that it is to our own body that we naturally refer exterior objects; that we carry about everywhere with us a system of axes to which we refer all the points of space and that this system of axes seems to be invariably bound to our body. It should be noticed that rigorously we could not speak of axes invariably bound to the body unless the different parts of this body were themselves invariably bound to one another. As this is not the case, we ought, before referring exterior objects to these fictitious61 axes, to suppose our body brought back to the initial attitude.
5. The Notion of Displacement62
I have shown in ‘Science and Hypothesis’ the preponderant r?le played by the movements of our body in the genesis of the notion of space. For a being completely immovable there would be neither space nor geometry; in vain would exterior objects be displaced about him, the variations which these displacements63 would make in his impressions would not be attributed by this being to changes of position, but to simple changes of state; this being would have no means of distinguishing these two sorts of changes, and this distinction, fundamental for us, would have no meaning for him.
The movements that we impress upon our members have as effect the varying of the impressions produced on our senses by external objects; other causes may likewise make them vary; but we are led to distinguish the changes produced by our own motions and we easily discriminate48 them for two reasons: (1) because they are voluntary; (2) because they are accompanied by muscular sensations.
So we naturally divide the changes that our impressions may undergo into two categories to which perhaps I have given an inappropriate designation: (1) the internal changes, which are voluntary and accompanied by muscular sensations; (2) the external changes, having the opposite characteristics.
We then observe that among the external changes are some which can be corrected, thanks to an internal change which brings everything back to the primitive6 state; others can not be corrected in this way (it is thus that, when an exterior object is displaced, we may then by changing our own position replace ourselves as regards this object in the same relative position as before, so as to reestablish the original aggregate64 of impressions; if this object was not displaced, but changed its state, that is impossible). Thence comes a new distinction among external changes: those which may be so corrected we call changes of position; and the others, changes of state.
Think, for example, of a sphere with one hemisphere blue and the other red; it first presents to us the blue hemisphere, then it so revolves65 as to present the red hemisphere. Now think of a spherical66 vase containing a blue liquid which becomes red in consequence of a chemical reaction. In both cases the sensation of red has replaced that of blue; our senses have experienced the same impressions which have succeeded each other in the same order, and yet these two changes are regarded by us as very different; the first is a displacement, the second a change of state. Why? Because in the first case it is sufficient for me to go around the sphere to place myself opposite the blue hemisphere and reestablish the original blue sensation.
Still more; if the two hemispheres, in place of being red and blue, had been yellow and green, how should I have interpreted the revolution of the sphere? Before, the red succeeded the blue, now the green succeeds the yellow; and yet I say that the two spheres have undergone the same revolution, that each has turned about its axis67; yet I can not say that the green is to yellow as the red is to blue; how then am I led to decide that the two spheres have undergone the same displacement? Evidently because, in one case as in the other, I am able to reestablish the original sensation by going around the sphere, by making the same movements, and I know that I have made the same movements because I have felt the same muscular sensations; to know it, I do not need, therefore, to know geometry in advance and to represent to myself the movements of my body in geometric space.
Another example: An object is displaced before my eye; its image was first formed at the center of the retina; then it is formed at the border; the old sensation was carried to me by a nerve fiber68 ending at the center of the retina; the new sensation is carried to me by another nerve fiber starting from the border of the retina; these two sensations are qualitatively69 different; otherwise, how could I distinguish them?
Why then am I led to decide that these two sensations, qualitatively different, represent the same image, which has been displaced? It is because I can follow the object with the eye and by a displacement of the eye, voluntary and accompanied by muscular sensations, bring back the image to the center of the retina and reestablish the primitive sensation.
I suppose that the image of a red object has gone from the center A to the border B of the retina, then that the image of a blue object goes in its turn from the center A to the border B of the retina; I shall decide that these two objects have undergone the same displacement. Why? Because in both cases I shall have been able to reestablish the primitive sensation, and that to do it I shall have had to execute the same movement of the eye, and I shall know that my eye has executed the same movement because I shall have felt the same muscular sensations.
If I could not move my eye, should I have any reason to suppose that the sensation of red at the center of the retina is to the sensation of red at the border of the retina as that of blue at the center is to that of blue at the border? I should only have four sensations qualitatively different, and if I were asked if they are connected by the proportion I have just stated, the question would seem to me ridiculous, just as if I were asked if there is an analogous70 proportion between an auditory sensation, a tactile71 sensation and an olfactory72 sensation.
Let us now consider the internal changes, that is, those which are produced by the voluntary movements of our body and which are accompanied by muscular changes. They give rise to the two following observations, analogous to those we have just made on the subject of external changes.
1. I may suppose that my body has moved from one point to another, but that the same attitude is retained; all the parts of the body have therefore retained or resumed the same relative situation, although their absolute situation in space may have varied73. I may suppose that not only has the position of my body changed, but that its attitude is no longer the same, that, for instance, my arms which before were folded are now stretched out.
I should therefore distinguish the simple changes of position without change of attitude, and the changes of attitude. Both would appear to me under form of muscular sensations. How then am I led to distinguish them? It is that the first may serve to correct an external change, and that the others can not, or at least can only give an imperfect correction.
This fact I proceed to explain as I would explain it to some one who already knew geometry, but it need not thence be concluded that it is necessary already to know geometry to make this distinction; before knowing geometry I ascertain the fact (experimentally, so to speak), without being able to explain it. But merely to make the distinction between the two kinds of change, I do not need to explain the fact, it suffices me to ascertain it.
However that may be, the explanation is easy. Suppose that an exterior object is displaced; if we wish the different parts of our body to resume with regard to this object their initial relative position, it is necessary that these different parts should have resumed likewise their initial relative position with regard to one another. Only the internal changes which satisfy this latter condition will be capable of correcting the external change produced by the displacement of that object. If, therefore, the relative position of my eye with regard to my finger has changed, I shall still be able to replace the eye in its initial relative situation with regard to the object and reestablish thus the primitive visual sensations, but then the relative position of the finger with regard to the object will have changed and the tactile sensations will not be reestablished.
2. We ascertain likewise that the same external change may be corrected by two internal changes corresponding to different muscular sensations. Here again I can ascertain this without knowing geometry; and I have no need of anything else; but I proceed to give the explanation of the fact, employing geometrical language. To go from the position A to the position B I may take several routes. To the first of these routes will correspond a series S of muscular sensations; to a second route will correspond another series S′′, of muscular sensations which generally will be completely different, since other muscles will be used.
How am I led to regard these two series S and S′′ as corresponding to the same displacement AB? It is because these two series are capable of correcting the same external change. Apart from that, they have nothing in common.
Let us now consider two external changes: α and β, which shall be, for instance, the rotation74 of a sphere half blue, half red, and that of a sphere half yellow, half green; these two changes have nothing in common, since the one is for us the passing of blue into red and the other the passing of yellow into green. Consider, on the other hand, two series of internal changes S and S′′; like the others, they will have nothing in common. And yet I say that α and β correspond to the same displacement, and that S and S′′ correspond also to the same displacement. why? Simply because S can correct α as well as β and because α can be corrected by S′′ as well as by S. And then a question suggests itself:
If I have ascertained75 that S corrects α and β and that S′′ corrects α, am I certain that S′′ likewise corrects β? Experiment alone can teach us whether this law is verified. If it were not verified, at least approximately, there would be no geometry, there would be no space, because we should have no more interest in classifying the internal and external changes as I have just done, and, for instance, in distinguishing changes of state from changes of position.
It is interesting to see what has been the r?le of experience in all this. It has shown me that a certain law is approximately verified. It has not told me how space is, and that it satisfies the condition in question. I knew, in fact, before all experience, that space satisfied this condition or that it would not be; nor have I any right to say that experience told me that geometry is possible; I very well see that geometry is possible, since it does not imply contradiction; experience only tells me that geometry is useful.
6. Visual Space
Although motor impressions have had, as I have just explained, an altogether preponderant influence in the genesis of the notion of space, which never would have taken birth without them, it will not be without interest to examine also the r?le of visual impressions and to investigate how many dimensions ‘visual space’ has, and for that purpose to apply to these impressions the definition of § 3.
A first difficulty presents itself: consider a red color sensation affecting a certain point of the retina; and on the other hand a blue color sensation affecting the same point of the retina. It is necessary that we have some means of recognizing that these two sensations, qualitatively different, have something in common. Now, according to the considerations expounded in the preceding paragraph, we have been able to recognize this only by the movements of the eye and the observations to which they have given rise. If the eye were immovable, or if we were unconscious of its movements, we should not have been able to recognize that these two sensations, of different quality, had something in common; we should not have been able to disengage from them what gives them a geometric character. The visual sensations, without the muscular sensations, would have nothing geometric, so that it may be said there is no pure visual space.
To do away with this difficulty, consider only sensations of the same nature, red sensations, for instance, differing one from another only as regards the point of the retina that they affect. It is clear that I have no reason for making such an arbitrary choice among all the possible visual sensations, for the purpose of uniting in the same class all the sensations of the same color, whatever may be the point of the retina affected76. I should never have dreamt of it, had I not before learned, by the means we have just seen, to distinguish changes of state from changes of position, that is, if my eye were immovable. Two sensations of the same color affecting two different parts of the retina would have appeared to me as qualitatively distinct, just as two sensations of different color.
In restricting myself to red sensations, I therefore impose upon myself an artificial limitation and I neglect systematically77 one whole side of the question; but it is only by this artifice78 that I am able to analyze79 visual space without mingling80 any motor sensation.
Imagine a line traced on the retina and dividing in two its surface; and set apart the red sensations affecting a point of this line, or those differing from them too little to be distinguished from them. The aggregate of these sensations will form a sort of cut that I shall call C, and it is clear that this cut suffices to divide the manifold of possible red sensations, and that if I take two red sensations affecting two points situated81 on one side and the other of the line, I can not pass from one of these sensations to the other in a continuous way without passing at a certain moment through a sensation belonging to the cut.
If, therefore, the cut has n dimensions, the total manifold of my red sensations, or if you wish, the whole visual space, will have n + 1.
Now, I distinguish the red sensations affecting a point of the cut C. The assemblage of these sensations will form a new cut C′. It is clear that this will divide the cut C, always giving to the word divide the same meaning.
If, therefore, the cut C′ has n dimensions, the cut C will have n + 1 and the whole of visual space n + 2.
If all the red sensations affecting the same point of the retina were regarded as identical, the cut C′ reducing to a single element would have 0 dimensions, and visual space would have 2.
And yet most often it is said that the eye gives us the sense of a third dimension, and enables us in a certain measure to recognize the distance of objects. When we seek to analyze this feeling, we ascertain that it reduces either to the consciousness of the convergence of the eyes, or to that of the effort of accommodation which the ciliary muscle makes to focus the image.
Two red sensations affecting the same point of the retina will therefore be regarded as identical only if they are accompanied by the same sensation of convergence and also by the same sensation of effort of accommodation or at least by sensations of convergence and accommodation so slightly different as to be indistinguishable.
On this account the cut C′ is itself a continuum and the cut C has more than one dimension.
But it happens precisely that experience teaches us that when two visual sensations are accompanied by the same sensation of convergence, they are likewise accompanied by the same sensation of accommodation. If then we form a new cut C′′ with all those of the sensations of the cut C′, which are accompanied by a certain sensation of convergence, in accordance with the preceding law they will all be indistinguishable and may be regarded as identical. Therefore C′′ will not be a continuum and will have 0 dimension; and as C′′ divides C′ it will thence result that C′ has one, C two and the whole visual space three dimensions.
But would it be the same if experience had taught us the contrary and if a certain sensation of convergence were not always accompanied by the same sensation of accommodation? In this case two sensations affecting the same point of the retina and accompanied by the same sense of convergence, two sensations which consequently would both appertain to the cut C′′, could nevertheless be distinguished since they would be accompanied by two different sensations of accommodation. Therefore C′′ would be in its turn a continuum and would have one dimension (at least); then C′ would have two, C three and the whole visual space would have four dimensions.
Will it then be said that it is experience which teaches us that space has three dimensions, since it is in setting out from an experimental law that we have come to attribute three to it? But we have therein performed, so to speak, only an experiment in physiology82; and as also it would suffice to fit over the eyes glasses of suitable construction to put an end to the accord between the feelings of convergence and of accommodation, are we to say that putting on spectacles is enough to make space have four dimensions and that the optician who constructed them has given one more dimension to space? Evidently not; all we can say is that experience has taught us that it is convenient to attribute three dimensions to space.
But visual space is only one part of space, and in even the notion of this space there is something artificial, as I have explained at the beginning. The real space is motor space and this it is that we shall examine in the following chapter.
点击收听单词发音
1 devoted | |
adj.忠诚的,忠实的,热心的,献身于...的 | |
参考例句: |
|
|
2 pertain | |
v.(to)附属,从属;关于;有关;适合,相称 | |
参考例句: |
|
|
3 differentiated | |
区分,区别,辨别( differentiate的过去式和过去分词 ); 区别对待; 表明…间的差别,构成…间差别的特征 | |
参考例句: |
|
|
4 aspired | |
v.渴望,追求( aspire的过去式和过去分词 ) | |
参考例句: |
|
|
5 primitively | |
最初地,自学而成地 | |
参考例句: |
|
|
6 primitive | |
adj.原始的;简单的;n.原(始)人,原始事物 | |
参考例句: |
|
|
7 amorphous | |
adj.无定形的 | |
参考例句: |
|
|
8 convene | |
v.集合,召集,召唤,聚集,集合 | |
参考例句: |
|
|
9 meshes | |
网孔( mesh的名词复数 ); 网状物; 陷阱; 困境 | |
参考例句: |
|
|
10 conformity | |
n.一致,遵从,顺从 | |
参考例句: |
|
|
11 syllable | |
n.音节;vt.分音节 | |
参考例句: |
|
|
12 radius | |
n.半径,半径范围;有效航程,范围,界限 | |
参考例句: |
|
|
13 deforming | |
使变形,使残废,丑化( deform的现在分词 ) | |
参考例句: |
|
|
14 deformation | |
n.形状损坏;变形;畸形 | |
参考例句: |
|
|
15 unreasonable | |
adj.不讲道理的,不合情理的,过度的 | |
参考例句: |
|
|
16 dilated | |
adj.加宽的,扩大的v.(使某物)扩大,膨胀,张大( dilate的过去式和过去分词 ) | |
参考例句: |
|
|
17 simultaneously | |
adv.同时发生地,同时进行地 | |
参考例句: |
|
|
18 apprising | |
v.告知,通知( apprise的现在分词 );评价 | |
参考例句: |
|
|
19 coordinate | |
adj.同等的,协调的;n.同等者;vt.协作,协调 | |
参考例句: |
|
|
20 coordinates | |
n.相配之衣物;坐标( coordinate的名词复数 );(颜色协调的)配套服装;[复数]女套服;同等重要的人(或物)v.使协调,使调和( coordinate的第三人称单数 );协调;协同;成为同等 | |
参考例句: |
|
|
21 inversely | |
adj.相反的 | |
参考例句: |
|
|
22 precisely | |
adv.恰好,正好,精确地,细致地 | |
参考例句: |
|
|
23 unwilling | |
adj.不情愿的 | |
参考例句: |
|
|
24 qualitative | |
adj.性质上的,质的,定性的 | |
参考例句: |
|
|
25 relatively | |
adv.比较...地,相对地 | |
参考例句: |
|
|
26 expatiate | |
v.细说,详述 | |
参考例句: |
|
|
27 spoke | |
n.(车轮的)辐条;轮辐;破坏某人的计划;阻挠某人的行动 v.讲,谈(speak的过去式);说;演说;从某种观点来说 | |
参考例句: |
|
|
28 Fahrenheit | |
n./adj.华氏温度;华氏温度计(的) | |
参考例句: |
|
|
29 exempt | |
adj.免除的;v.使免除;n.免税者,被免除义务者 | |
参考例句: |
|
|
30 quantitative | |
adj.数量的,定量的 | |
参考例句: |
|
|
31 ascertain | |
vt.发现,确定,查明,弄清 | |
参考例句: |
|
|
32 ascertainment | |
n.探查,发现,确认 | |
参考例句: |
|
|
33 peculiarity | |
n.独特性,特色;特殊的东西;怪癖 | |
参考例句: |
|
|
34 sinuous | |
adj.蜿蜒的,迂回的 | |
参考例句: |
|
|
35 whatsoever | |
adv.(用于否定句中以加强语气)任何;pron.无论什么 | |
参考例句: |
|
|
36 purely | |
adv.纯粹地,完全地 | |
参考例句: |
|
|
37 distinguished | |
adj.卓越的,杰出的,著名的 | |
参考例句: |
|
|
38 apropos | |
adv.恰好地;adj.恰当的;关于 | |
参考例句: |
|
|
39 verities | |
n.真实( verity的名词复数 );事实;真理;真实的陈述 | |
参考例句: |
|
|
40 futile | |
adj.无效的,无用的,无希望的 | |
参考例句: |
|
|
41 experimentation | |
n.实验,试验,实验法 | |
参考例句: |
|
|
42 derive | |
v.取得;导出;引申;来自;源自;出自 | |
参考例句: |
|
|
43 obviated | |
v.避免,消除(贫困、不方便等)( obviate的过去式和过去分词 ) | |
参考例句: |
|
|
44 exterior | |
adj.外部的,外在的;表面的 | |
参考例句: |
|
|
45 nebula | |
n.星云,喷雾剂 | |
参考例句: |
|
|
46 attain | |
vt.达到,获得,完成 | |
参考例句: |
|
|
47 receded | |
v.逐渐远离( recede的过去式和过去分词 );向后倾斜;自原处后退或避开别人的注视;尤指问题 | |
参考例句: |
|
|
48 discriminate | |
v.区别,辨别,区分;有区别地对待 | |
参考例句: |
|
|
49 discriminated | |
分别,辨别,区分( discriminate的过去式和过去分词 ); 歧视,有差别地对待 | |
参考例句: |
|
|
50 sufficiently | |
adv.足够地,充分地 | |
参考例句: |
|
|
51 postulated | |
v.假定,假设( postulate的过去式和过去分词 ) | |
参考例句: |
|
|
52 remains | |
n.剩余物,残留物;遗体,遗迹 | |
参考例句: |
|
|
53 solely | |
adv.仅仅,唯一地 | |
参考例句: |
|
|
54 justify | |
vt.证明…正当(或有理),为…辩护 | |
参考例句: |
|
|
55 essentially | |
adv.本质上,实质上,基本上 | |
参考例句: |
|
|
56 susceptible | |
adj.过敏的,敏感的;易动感情的,易受感动的 | |
参考例句: |
|
|
57 engendered | |
v.产生(某形势或状况),造成,引起( engender的过去式和过去分词 ) | |
参考例句: |
|
|
58 expounded | |
论述,详细讲解( expound的过去式和过去分词 ) | |
参考例句: |
|
|
59 tempted | |
v.怂恿(某人)干不正当的事;冒…的险(tempt的过去分词) | |
参考例句: |
|
|
60 entirely | |
ad.全部地,完整地;完全地,彻底地 | |
参考例句: |
|
|
61 fictitious | |
adj.虚构的,假设的;空头的 | |
参考例句: |
|
|
62 displacement | |
n.移置,取代,位移,排水量 | |
参考例句: |
|
|
63 displacements | |
n.取代( displacement的名词复数 );替代;移位;免职 | |
参考例句: |
|
|
64 aggregate | |
adj.总计的,集合的;n.总数;v.合计;集合 | |
参考例句: |
|
|
65 revolves | |
v.(使)旋转( revolve的第三人称单数 );细想 | |
参考例句: |
|
|
66 spherical | |
adj.球形的;球面的 | |
参考例句: |
|
|
67 axis | |
n.轴,轴线,中心线;坐标轴,基准线 | |
参考例句: |
|
|
68 fiber | |
n.纤维,纤维质 | |
参考例句: |
|
|
69 qualitatively | |
质量上 | |
参考例句: |
|
|
70 analogous | |
adj.相似的;类似的 | |
参考例句: |
|
|
71 tactile | |
adj.触觉的,有触觉的,能触知的 | |
参考例句: |
|
|
72 olfactory | |
adj.嗅觉的 | |
参考例句: |
|
|
73 varied | |
adj.多样的,多变化的 | |
参考例句: |
|
|
74 rotation | |
n.旋转;循环,轮流 | |
参考例句: |
|
|
75 ascertained | |
v.弄清,确定,查明( ascertain的过去式和过去分词 ) | |
参考例句: |
|
|
76 affected | |
adj.不自然的,假装的 | |
参考例句: |
|
|
77 systematically | |
adv.有系统地 | |
参考例句: |
|
|
78 artifice | |
n.妙计,高明的手段;狡诈,诡计 | |
参考例句: |
|
|
79 analyze | |
vt.分析,解析 (=analyse) | |
参考例句: |
|
|
80 mingling | |
adj.混合的 | |
参考例句: |
|
|
81 situated | |
adj.坐落在...的,处于某种境地的 | |
参考例句: |
|
|
82 physiology | |
n.生理学,生理机能 | |
参考例句: |
|
|
欢迎访问英文小说网 |