小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » Flowers of the Sky » X. THE PLANET JUPITER.
选择底色: 选择字号:【大】【中】【小】
X. THE PLANET JUPITER.
关注小说网官方公众号(noveltingroom),原版名著免费领。
Two or three years ago I had occasion to consider in the Day of Rest the giant planet Jupiter, the largest and most massive of all the bodies circling around the sun. I then presented a new theory respecting Jupiter's condition, to which I had been led in 1869, when I was visiting other worlds than ours. Since then, in fact within the last few months, observations have been made which place the new theory on a somewhat firm basis; and I propose now briefly1 to reconsider the subject in the light of these latest observations.

In the first place I would call the reader's attention to the way in which modern science has altered our ideas respecting time as well as space, though the change has only been noticed specially2 as it affects space. In former ages men regarded the region of space over which they in some sense had rule as very extensive indeed. This earth was the most important body in the universe, all others being not only made for the service of the earth, but being in all respects, in size, in range, and so forth3, altogether subordinate to it. Step by step men passed from this to an entirely4 different conception of our earth's position in space. Shown first to be a globe within the domain5 of the heavenly bodies, then to be a globe subordinate to the sun, then to be a member of one family among thousands each with its ruling sun, then to belong to a galaxy6 of suns which is but one among myriads7 of millions of such galaxies8, and lastly shown to the eye of reason, though not to direct observation, as belonging to a galaxy of galaxies itself but one among millions of the same order, which in turn belong to higher and higher orders endlessly, the earth has come to be regarded, despite its importance to ourselves, as but a point in space. The minutest particle by which a mathematician9 might attempt to picture the conception of a mathematical point, comparing that particle with any near object however large, a house, a mountain, the earth itself, would be but the grossest representation of a point, by comparison with the massive earth, when she is considered with reference to the universe of the fixed10 stars or rather to that portion of the universe, itself but a point in space, over which the survey of the astronomer11 extends.

All this has been admitted. Men have fully12 learned to recognise, though they are quite unable to conceive, the utter minuteness, one may say the evanescence, of their abode13 in space.

But along with the extension of our ideas respecting space, a corresponding extension has been made, or should have been made, in our conceptions respecting time. We have learned to recognise the time during which our earth has been and will be a fit abode for living creatures as exceedingly short compared with the time during which she was being fashioned into fitness for that purpose, and with the ?ons of ?ons to follow, after life has disappeared from her surface. This, however, is but one step towards the eternities to which modern science points. The earth is but one of many bodies of a system; and though it has been the custom to regard the birth of that system as if it had been effected, if one may so speak, in a single continuous effort (lasting millions of millions of years, mayhap, but bringing all the planets and their central sun simultaneously14 into fitness for their purpose), there is no reason whatever for supposing this to have been really the case, while there are many reasons for regarding it as utterly15 unlikely. It seems as though men could not divest16 themselves of the idea that our earth's history is the history of the solar system and of the universe. Precisely17 as children can hardly be brought to understand, for a long time, what history really means, how generation after generation of their own race has passed away, and how their own race has succeeded countless18 others, so science, still young, seems scarcely to appreciate the real meaning of its own discoveries. It follows directly from these that world after world like our earth, in this our own system or among the millions peopling space, has had its day, and that the systems themselves, on which such worlds attend, are but the existent representatives of their order, and succeed countless other systems which have long since served their purpose.

Yet, strangely enough, students of science continue for the most part to speak of other worlds, and other suns, and other systems, as though this present era, this "bank and shoal of time," were the sole period to which to refer in considering the condition of those worlds and suns and systems. It does not seem to occur to them that,—not possibly or probably, but most certainly,—myriads among the celestial19 bodies must be passing through stages preceding those which are compatible with the existence or support of life, while myriads of others must long since have passed that stage. And thus ideas appear strange and fanciful to them which, rightly apprehended20, are alone in strict accordance with analogy. To consider Jupiter or Saturn21 as in the extreme youth of planetary existence, still glowing with such heat as pervaded22 the whole frame of our earth before she became a habitable world, still enveloped23 in cloud masses containing within them the very oceans of those future worlds, all this is regarded as fanciful and sensational24. Yet those who so regard such theories do not hesitate to admit that every planet must once in its life pass through the fiery25 stage of planetary existence, nor are they prepared to show any reason why the stage must be regarded as past in the case of every planet or even of most of the planets. Seeing that, on the other hand, there are abundant reasons for believing that planets differ very widely as regards the duration of the various stages of their life, and that our earth is by no means one of the longest lived, we may very fairly expect to find among the planets some which are very much younger than our earth,—not younger, it will be understood, in years, but younger in the sense of being less advanced in development. When we further find that all the evidence accords with this view, we may regard it as the one to which true science points.

All that we know about the processes through which our earth has passed suggests the probability, I will even say the certainty, that planets so much larger than she is as are Jupiter and Saturn must require much longer periods for every one of those processes. A vast mass like Jupiter would not cool down from the temperature which our earth possessed26 when her surface was molten to that which she at present possesses in the same time as the earth, but in a period many times longer.

Supposing Bischoff to be right in assigning 340,000,000 years to that era of our earth's past, I have calculated that Jupiter would require about seven times and Saturn nearly five times as long, or about 2,380,000,000 and 1,500,000,000 years respectively, and by these respective periods would they be behind the earth as respects this stage of development. Suppose, however, on the other hand, that Bischoff has greatly overrated the length of that era—and I must confess that experiments on the cooling of small masses of rock, such as he dealt with, seem to afford very unsatisfactory evidence respecting the cooling of a great globe like our earth. Say that instead of 340,000,000 years we must assign but a tenth part of that time to the era in question. Even then we find for the corresponding era of Jupiter's existence about 238,000,000 years, and for that of Saturn's 150,000,000 years, or in one case more than 200,000,000 years longer, in the other more than 110,000,000 years longer than in our earth's case.

This relates to but one era only of our earth's past. That era was preceded by others which are usually considered to have lasted much longer. The earth, according to the nebular theory of Laplace, was once a mighty27 ring surrounding the sun, and had to contract into globe form, a process requiring many millions of years. When first formed into a globe she was vaporous, and had to contract—forming the moon in so doing—until she became a mass, first of liquid, then of plastic half solid matter, glowing with fire and covered with tracts28 of fluent heat. Here was another stage of her past existence, requiring probably many hundreds of millions of years. Jupiter and Saturn had to pass through similar stages of development, and required many times as many years for each of them. Is it then reasonable to suppose that they have arrived at the same stage of development as our earth, or indeed as each other.

Supposing for a moment that we were fully assured that Jupiter and Saturn had separate existence, hundreds of millions of years before our earth had been separated from the great glowing mass of vapour formerly29 constituting the solar system, and that having this enormous start, so to speak, they need not necessarily be regarded as now very greatly in arrear30 as respects development, or might even be in advance of the earth, it is altogether improbable that either of them, and far more improbable that both of them, are passing through precisely the same stage of development. If we knew only of two ships, that one had to travel from New York to London, and another from Canton to Liverpool, some time during the year, and that the one which had to make the longer journey was likely to start several weeks before the other, would it not be rather unsafe to conclude, when the former had entered the mouth of the Thames, that in all probability the other was sailing up the Mersey? Yet something like this, or in reality much wilder than this, is the reasoning which permits the student of science to believe, independently of the evidence, or altogether against all evidence, that Jupiter and Saturn are necessarily passing through the very stage of planetary existence through which the one planet we know much about is passing.

It seems to me that the student of science should be prepared to widen his conceptions of time even as he has been compelled to widen his conceptions of space. As he knows that the planets are not, as was once supposed, mere31 attendants upon our earth and belonging to her special domain in space, so should he understand that neither do the other planets appertain of necessity to the domain of time in which our earth's existence has been cast, or only do so in the same sense that like her they occupy a certain domain in space, not her domain, but the sun's. Their history in time, like hers, doubtless belongs to the history of the solar system, but the duration of that system enormously surpasses the duration of the earth as a planet, and immeasurably surpasses the duration of that particular stage of life through which she is now passing.

Prepared thus to view the other planets independently of preconceived ideas as to their resemblance to our own earth, we shall not find much occasion to hesitate, I think, in accepting the conclusion that Jupiter is a very much younger planet.

We have seen already that the enormous mass of Jupiter, surpassing that of our earth 340 times, is suggestive of the enormous duration of every stage of his existence, and therefore of his present extreme youth. His bulk yet more enormously exceeds that of our earth, as, according to the best measurements, no less than 1230 globes, as large as our earth, might be formed out of the mighty volume of the prince of planets. In this superiority of bulk, nearly four times greater than his vast superiority of mass, we find the first direct evidence from observation in favour of the theory that Jupiter is still intensely hot. How can a mass so vast, possessing an attractive power in its own substance so great that, under similar conditions, it should be compressed to a far greater degree than our earth, and be, therefore, considerably32 more dense33, come to be considerably rarer? We no longer believe that there is any great diversity of material throughout the solar system. We cannot suppose, as Whewell once invited us to do, that Jupiter consists wholly or almost wholly of water. Nor can we imagine that any material much lighter34 than ordinary rocks constitutes the chief portion of his bulk. We are, to all intents and purposes, forced to believe that the contractive effect due to his mighty attractive energy is counteracted35 by some other force. Nor can we hesitate, since this is admitted, to look for the resisting force in the expansive effects due to heat. We know that in the case of the sun, where a much mightier36 contractive power is at work, a much more intense heat so resists it that the sun has a mean density37 no greater than Jupiter's. We have every reason, then, which bulk and mass can supply, to believe that Jupiter is far hotter than the earth—that in fact, as the sun, exceeding Jupiter more than 1000 times in volume, is many times hotter than he is, so Jupiter, exceeding our earth 1200 times in volume, is very much hotter than the earth.
Fig38. 24.—The Planet Jupiter.

But when we consider the aspect of Jupiter we find that similar reasoning applies to his atmosphere. The telescope shows Jupiter as an orb39 continually varying in aspect, so as to assure us that we do not see his real surface. The variable envelope we do see presents, further, all the appearance of being laden40 with enormously deep clouds. The figure (24) shows the planet as seen by Herr Lohse on February 5, 1872, and serves to illustrate41 the rounded clouds often seen in Jupiter's equatorial zone, as though floating in the deep atmosphere there. Although rounded clouds such as these are not constantly present, they are very often seen; their appearance, even on a few occasions only, would suffice for the argument I now propose to draw from them. It is impossible to regard them as flat round clouds. Manifestly they are globular. Now they may not be quite as deep as they are long, or even broad, but supposing them only half as deep as they are broad, that would correspond to much more than a third of the diameter of our earth, shown in the same picture. The atmosphere in which they float would necessarily be deeper still, but that depth alone would be about 3,000 miles. Now an atmosphere 3,000 miles deep under the tremendous attraction of Jupiter's mass would be compressed near its base to a density many times exceeding that of the densest42 solids if (which of course is impossible) it could remain in the gaseous43 form with such density. The fact, then, that an atmosphere, certainly gaseous, exists around Jupiter to this enormous depth at least, proves to demonstration44 that there must be some power resisting its attractive energy; and again, we have little choice but to admit that that power is no other than the planet's intense heat.

As we extend our scrutiny45 into the evidence from direct observation, we find still other proofs independent of those just considered. One proof alone, be it remembered, is all that is required, but it will be found that there are many.

We have found reasons for believing that the planet Jupiter is expanded by heat in such sort that the contractive or condensing power of his own mighty attractive energy is overcome. We know certainly that, regarding the planet we see as a whole, its globe is of very small density. We have every reason to believe that it is made of the same materials, speaking generally, as our earth. We know that its mass as a whole possesses many times the gravitating power of our earth's mass. It is highly probable, therefore, that the condition of its substance is very different from that of our earth's substance. And as we know of no cause save heat which could keep the planet in this state, it is altogether probable that the planet is extremely hot. The argument, be it noticed, is independent of that based on the probability that Jupiter, owing to his enormous mass, has not cooled nearly so much as our earth has.

We then noticed another very powerful argument, similar in kind, but also quite independent, derived46 from the aspect of the planet. Jupiter's appearance indicates clearly that he has a deep cloud-laden atmosphere, and we know that such an atmosphere, if of the same temperature as our earth's, would be compressed enormously, whereas the observed mobility47 of Jupiter's cloud-envelope, and other circumstances, indicate that this enormous compression does not exist. We infer, then, that some cause is at work expanding the atmosphere; and we know of no other cause but heat which could do so effectively.

But now let us consider certain details which the telescope has brought to our knowledge.

In the first place, a number of circumstances indicate a tremendous activity in that deep cloud-laden air.

The cloud-belts sometimes change remarkably48 in appearance and shape in a very short time. Mr. Webb, in his excellent little treatise49, "Celestial Objects for Common Telescopes," gives instances from the observations of South, which I here translate into non-technical terms:—On June 3, 1839, at about nine in the evening, South saw with his large telescope, just below the principal belt of Jupiter, a spot of enormous size. It was dark, and therefore probably represented an opening in a great cloud-layer by which a lower or inner layer was brought into view. (For though the planet's real globe may be so intensely hot as to emit a great deal of light, it is probable that most of the light so emitted is concealed50 by the enwrapping cloud masses, and that the greater part of the light we receive from the planet is reflected sunlight; so that the inner cloud-layers would be the darker.) South estimated this spot as about 20,000 miles in diameter. "I showed it," he says, "to some gentlemen who were present; its enormous extent was such that on my wishing to have a portrait of it, one of the gentlemen, who was a good draughtsman, kindly51 undertook to draw me one; whilst I, on the other hand, extremely desirous that its actual magnitude should not rest on estimation, proposed, on account of the scandalous unsteadiness of the large instrument, to measure it with my five-feet telescope. Having obtained for my companion the necessary drawing instruments, I went to work, he preparing himself to commence his." But on looking into the telescope, South was astonished to find that the large dark spot, except at its eastern and western edges, had become much whiter than any of the other parts of the planet; and thirty-four minutes after these observations had commenced, "these" [query three?] "miserable52 scraps53 were the only remains54 of a spot which but a few minutes before had extended over at least 20,000 miles,—or two and a half times the diameter of the earth."

The cloud envelope, then, of Jupiter is certainly not in a state of quiescence55. Of course we need not suppose that winds had carried cloud masses athwart the tremendous opening seen by South. That would imply a motion of 10,000 miles in the half-hour or so of observation,—supposing contrary winds to have rushed towards the centre,—or double that velocity56 if the entire breadth of the spot had been traversed in that time. A velocity of 20,000 miles, and still more of 40,000 miles per hour, may fairly be regarded as incredible. It would exceed more than a hundred-fold (taking the least number) the velocity of our most tremendous hurricanes. And although the solar hurricanes would seem to have a velocity, at times, of 300,000 or 400,000 miles per hour, we have no reason for supposing that winds of tens of thousands of miles per hour could be raised in the atmosphere of Jupiter. As I have said, however, it is not necessary to suppose this. We may conceive that clouds had formed very rapidly at the higher elevation57 where before they had been wanting. Clouds may form as readily and quickly over an area a thousand miles across as over an area two or three miles across. Indeed Webb, referring to such changes as South witnessed, says that Sir J. Herschel once observed a cloud-bank in our own air, which formed so rapidly that it crossed the sky at the rate of 300 miles an hour, not moving, of course, at that rate, but being formed along different parts of its apparent progress almost simultaneously, so as to appear to travel with this enormous velocity.

But now I wish the reader specially to notice how this observation of South's may serve to explain another, equally remarkable58 and at first sight far more perplexing; and how, when the two observations are brought together, a very singular piece of information is obtained respecting Jupiter's cloud-envelope.

Let a b, fig. 25, represent the great dark space seen by South, just below the principal belt, and let us suppose the planet turned round until this dark space, or rather this opening in the planet's outer cloud-envelope, is brought to the edge as at a c d, fig. 26. Then this opening would really cause a depression in the planet's outline at d c, the shaded part being depressed59. The depression might not be observable in any ordinary telescope. For at the edge of Jupiter the features of the belt are generally lost, and the outline is at all times smoothed in appearance by that peculiarity60 of vision which makes all bright objects seen on a dark background appear somewhat larger than they actually are. (This is really due to a fringing, as it were, of the image on the retina of the eye.) But though the depression might not be recognisable, it would exist, and, as we shall presently see, it might be detected in another way than by being actually seen. When the clouds formed which concealed the spot,—we do not know how quickly, but certainly in less than thirty-four minutes,—the depression, had the spot been at the edge, would have been removed. This change, however, like the existence of the depression, would doubtless not have been discernible by ordinary vision.
Fig. 25.           Fig. 26.

Now, let us consider the second observation mentioned above.
Fig. 27.           Fig. 28.           Fig. 29.

On Thursday, June 26, 1828, the second satellite of Jupiter was about to make a passage across the planet's face. It was observed, just before this passage or transit61 began, in the position shown in fig. 27 by the late Admiral Smyth. He was using an excellent telescope. It gradually made its entry, looking for a few minutes like a small white mountain on the edge of the planet, and finally disappeared. The reader must understand that the moon was not hiding itself behind the planet, but was on this side of it, and simply lost to view because its brightness was the same, or very nearly the same, as that of the planet's edge. (Its place is shown in fig. 28, but of course the little dark ring was not so seen.) "At least 12 or 13 minutes must have elapsed," says Smyth, "when, accidentally turning to Jupiter again, to my astonishment62 I perceived the same satellite outside the disc," as shown in fig. 29. It remained visible there for at least four minutes, and then suddenly vanished. To show that the observation was not due to any local or personal peculiarity, it is only necessary to mention that two other astronomers63, Mr. Maclear at Biggleswade, and Dr. Pearson at South Kilworth, observed the same extraordinary behaviour of Jupiter's second satellite. The three telescopes are thus described by Admiral Smyth,—

Mr. Maclear's, 3? inches in opening, 3? feet long;

Dr. Pearson's, 6? inches in opening, 12 feet long;

Adm. Smyth's, 3? inches in opening, 5 feet long;

all good observing telescopes. Now, of course, the satellite did not really stop. Nothing short of a miracle could have stopped the satellite, or, if the satellite could have stopped, have set it travelling on again as usual. For the satellite did not lose one mile, or change its velocity by the thousandth part of a mile per hour or even per annum.

But suppose such a change had taken place at the edge of Jupiter as we have seen would certainly have taken place there if the changes affecting the spot which South saw had occurred to a region at the edge, as in fig. 26, instead of the middle, as in fig. 25. Then Smyth's observation would be perfectly64 explained. We require, indeed, to suppose the change occurring in a different order, the outer cloud-layer being in the first instance well-developed and very rapidly becoming dissipated, so that the outline which had at first been at its usual level, was very rapidly depressed to the inner cloud-layer. But, of course, if the rapid formation of clouds by condensation65 can occur on Jupiter, so also can the rapid dissipation occur, especially at that particular part where Smyth saw the satellite behave so strangely. For that part is being carried, by the planet's swift rotation66, into sunlight, and the extra heat to which it is thus exposed might readily effect the dissipation of widely extended cloud strata67, supposing the temperature near that critical value at which clouds form or are dissipated.

Here, then, is an explanation of a phenomenon which otherwise seems utterly inexplicable68. The explanation requires only that a process like one which has been observed to occur on Jupiter's disc should occur at a part of his surface forming at the moment a portion of his outline. If we had never known of such changes as South and other observers have noted69 in the markings of Jupiter, we should be compelled by Smyth's observation to admit their possibility. If we had never known of Smyth's observation we should be compelled by South's to admit that such a change of outline as is indicated by Smyth's observation must be possible,—must, in fact, occur whenever cloud-masses form or are dissipated over wide areas at the apparent edge of the planet. When we have both forms of evidence it seems altogether unreasonable70 to entertain any further doubt on this point.

But Smyth's observation, thus interpreted, indicates an enormous distance between the outer and inner cloud-layers which formed the planet's edge near the satellite in figs71. 28 and 29 respectively. I find after making every possible allowance for errors in his estimate of time, not taken it would seem from his observatory72 clock, that the distance separating these cloud-layers cannot have been less than 3,500 miles, or not far from half the diameter of our earth. It is the startling nature of this result which perhaps deters73 many from accepting the explanation of Smyth's observation here advanced. But there is no other explanation. The satellite cannot have stopped in its course; Jupiter cannot have shifted his place bodily; the satellite was on this side of the planet,—therefore no effects of the planet's atmosphere on the line of sight from the planet can help us; three observers at different stations saw the phenomenon,—therefore neither effects of our earth's atmosphere nor personal peculiarities74 can account for the strange phenomenon. "Explanation is set at defiance," says Webb; "demonstrably neither in the atmosphere of the earth nor Jupiter, where and what could have been the cause?" The explanation I have advanced is the only possible answer to this question.

I might occupy twenty times the space here available to me in detailing various other phenomena75 all pointing in the same way,—that is, all tending to show that Jupiter is a planet glowing with intense heat, surrounded by a deep cloud-laden atmosphere, intensely hot in its lower portions, but not necessarily so in the parts we see, and undergoing changes (consequences of heat) of a stupendous nature, such as the small heat of the remote sun, which shines on Jupiter with less than the 27th part of the heat we receive, could not by any possibility produce. But partly because space will not permit, partly because most of these phenomena have been described in my "Orbs76 Around Us," and "Other Worlds," I content myself by describing a singular observation recently made, which, with South's and Smyth's, seems to place the theory I have advanced beyond the possibility of doubt or cavil77.

Mr. Todd of Adelaide has recently obtained for his observatory a fine 8-inch telescope by Mr. Cooke. With this instrument, mounted in December, 1874, he has made many valuable observations of the motions of Jupiter's satellites. Ordinarily, of course, the entry of each satellite on the planet's face and the egress78 therefrom, the disappearance79 of each satellite behind the planet or in the planet's shadow (not necessarily the same thing) and the reappearance, are effected in what may be called the normal way; and Mr. Todd's experience in this respect has been like that of other observers. But on two occasions he and his assistant, Mr. Ringwood, observed that a satellite, when passing behind the planet's edge, did not disappear at once, but remained visible as if seen through the edge, for about two minutes. The same satellite behaved thus on each occasion,—viz. the satellite nearest the planet. As this satellite travels at the rate of about 645 miles per minute, it would follow that the satellite was seen through a depth of nearly 1300 miles, or, after making all possible allowance for optical illusions, some 900 or 1000 miles. The effect of refraction cannot then be great in the air of Jupiter, to this depth below the usual limit of the upper clouds,—for otherwise the satellite would have been altogether distorted. And this very fact, that for 1000 miles or so below the highest clouds the change of atmospheric80 density is not sufficient to produce any noticeable refractive effects, implies that the true base of the atmosphere of Jupiter lies very far lower yet—perhaps many hundreds of miles lower.

If the reader now look again at the picture at page 201, he will understand, I think, how those great round white clouds in the chief belt,—clouds thousands of miles long and broad,—are probably hundreds of miles deep also, and float in an atmosphere still deeper.

All that we know about Jupiter, in fine, from direct observation, as well as all that we can infer respecting the past history of the solar system, tends to show that he is still an extremely young planet. He is the giant of the solar family in bulk, and probably he is far older than our earth in years; but in development he is, in all probability, the youngest of the sun's family of planets, and certainly far younger than the earth on which we live.

点击收听单词发音收听单词发音  

1 briefly 9Styo     
adv.简单地,简短地
参考例句:
  • I want to touch briefly on another aspect of the problem.我想简单地谈一下这个问题的另一方面。
  • He was kidnapped and briefly detained by a terrorist group.他被一个恐怖组织绑架并短暂拘禁。
2 specially Hviwq     
adv.特定地;特殊地;明确地
参考例句:
  • They are specially packaged so that they stack easily.它们经过特别包装以便于堆放。
  • The machine was designed specially for demolishing old buildings.这种机器是专为拆毁旧楼房而设计的。
3 forth Hzdz2     
adv.向前;向外,往外
参考例句:
  • The wind moved the trees gently back and forth.风吹得树轻轻地来回摇晃。
  • He gave forth a series of works in rapid succession.他很快连续发表了一系列的作品。
4 entirely entirely     
ad.全部地,完整地;完全地,彻底地
参考例句:
  • The fire was entirely caused by their neglect of duty. 那场火灾完全是由于他们失职而引起的。
  • His life was entirely given up to the educational work. 他的一生统统献给了教育工作。
5 domain ys8xC     
n.(活动等)领域,范围;领地,势力范围
参考例句:
  • This information should be in the public domain.这一消息应该为公众所知。
  • This question comes into the domain of philosophy.这一问题属于哲学范畴。
6 galaxy OhoxB     
n.星系;银河系;一群(杰出或著名的人物)
参考例句:
  • The earth is one of the planets in the Galaxy.地球是银河系中的星球之一。
  • The company has a galaxy of talent.该公司拥有一批优秀的人才。
7 myriads d4014a179e3e97ebc9e332273dfd32a4     
n.无数,极大数量( myriad的名词复数 )
参考例句:
  • Each galaxy contains myriads of stars. 每一星系都有无数的恒星。 来自《简明英汉词典》
  • The sky was set with myriads of stars. 无数星星点缀着夜空。 来自《现代英汉综合大词典》
8 galaxies fa8833b92b82bcb88ee3b3d7644caf77     
星系( galaxy的名词复数 ); 银河系; 一群(杰出或著名的人物)
参考例句:
  • Quasars are the highly energetic cores of distant galaxies. 类星体是遥远星系的极为活跃的核心体。
  • We still don't know how many galaxies there are in the universe. 我们还不知道宇宙中有多少个星系。
9 mathematician aoPz2p     
n.数学家
参考例句:
  • The man with his back to the camera is a mathematician.背对着照相机的人是位数学家。
  • The mathematician analyzed his figures again.这位数学家再次分析研究了他的这些数字。
10 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
11 astronomer DOEyh     
n.天文学家
参考例句:
  • A new star attracted the notice of the astronomer.新发现的一颗星引起了那位天文学家的注意。
  • He is reputed to have been a good astronomer.他以一个优秀的天文学者闻名于世。
12 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
13 abode hIby0     
n.住处,住所
参考例句:
  • It was ten months before my father discovered his abode.父亲花了十个月的功夫,才好不容易打听到他的住处。
  • Welcome to our humble abode!欢迎光临寒舍!
14 simultaneously 4iBz1o     
adv.同时发生地,同时进行地
参考例句:
  • The radar beam can track a number of targets almost simultaneously.雷达波几乎可以同时追着多个目标。
  • The Windows allow a computer user to execute multiple programs simultaneously.Windows允许计算机用户同时运行多个程序。
15 utterly ZfpzM1     
adv.完全地,绝对地
参考例句:
  • Utterly devoted to the people,he gave his life in saving his patients.他忠于人民,把毕生精力用于挽救患者的生命。
  • I was utterly ravished by the way she smiled.她的微笑使我完全陶醉了。
16 divest 9kKzx     
v.脱去,剥除
参考例句:
  • I cannot divest myself of the idea.我无法消除那个念头。
  • He attempted to divest himself of all responsibilities for the decision.他力图摆脱掉作出该项决定的一切责任。
17 precisely zlWzUb     
adv.恰好,正好,精确地,细致地
参考例句:
  • It's precisely that sort of slick sales-talk that I mistrust.我不相信的正是那种油腔滑调的推销宣传。
  • The man adjusted very precisely.那个人调得很准。
18 countless 7vqz9L     
adj.无数的,多得不计其数的
参考例句:
  • In the war countless innocent people lost their lives.在这场战争中无数无辜的人丧失了性命。
  • I've told you countless times.我已经告诉你无数遍了。
19 celestial 4rUz8     
adj.天体的;天上的
参考例句:
  • The rosy light yet beamed like a celestial dawn.玫瑰色的红光依然象天上的朝霞一样绚丽。
  • Gravity governs the motions of celestial bodies.万有引力控制着天体的运动。
20 apprehended a58714d8af72af24c9ef953885c38a66     
逮捕,拘押( apprehend的过去式和过去分词 ); 理解
参考例句:
  • She apprehended the complicated law very quickly. 她很快理解了复杂的法律。
  • The police apprehended the criminal. 警察逮捕了罪犯。
21 Saturn tsZy1     
n.农神,土星
参考例句:
  • Astronomers used to ask why only Saturn has rings.天文学家们过去一直感到奇怪,为什么只有土星有光环。
  • These comparisons suggested that Saturn is made of lighter materials.这些比较告诉我们,土星由较轻的物质构成。
22 pervaded cf99c400da205fe52f352ac5c1317c13     
v.遍及,弥漫( pervade的过去式和过去分词 )
参考例句:
  • A retrospective influence pervaded the whole performance. 怀旧的影响弥漫了整个演出。 来自《简明英汉词典》
  • The air is pervaded by a smell [smoking]. 空气中弥散着一种气味[烟味]。 来自《现代英汉综合大词典》
23 enveloped 8006411f03656275ea778a3c3978ff7a     
v.包围,笼罩,包住( envelop的过去式和过去分词 )
参考例句:
  • She was enveloped in a huge white towel. 她裹在一条白色大毛巾里。
  • Smoke from the burning house enveloped the whole street. 燃烧着的房子冒出的浓烟笼罩了整条街。 来自《简明英汉词典》
24 sensational Szrwi     
adj.使人感动的,非常好的,轰动的,耸人听闻的
参考例句:
  • Papers of this kind are full of sensational news reports.这类报纸满是耸人听闻的新闻报道。
  • Their performance was sensational.他们的演出妙极了。
25 fiery ElEye     
adj.燃烧着的,火红的;暴躁的;激烈的
参考例句:
  • She has fiery red hair.她有一头火红的头发。
  • His fiery speech agitated the crowd.他热情洋溢的讲话激动了群众。
26 possessed xuyyQ     
adj.疯狂的;拥有的,占有的
参考例句:
  • He flew out of the room like a man possessed.他像着了魔似地猛然冲出房门。
  • He behaved like someone possessed.他行为举止像是魔怔了。
27 mighty YDWxl     
adj.强有力的;巨大的
参考例句:
  • A mighty force was about to break loose.一股巨大的力量即将迸发而出。
  • The mighty iceberg came into view.巨大的冰山出现在眼前。
28 tracts fcea36d422dccf9d9420a7dd83bea091     
大片土地( tract的名词复数 ); 地带; (体内的)道; (尤指宣扬宗教、伦理或政治的)短文
参考例句:
  • vast tracts of forest 大片大片的森林
  • There are tracts of desert in Australia. 澳大利亚有大片沙漠。
29 formerly ni3x9     
adv.从前,以前
参考例句:
  • We now enjoy these comforts of which formerly we had only heard.我们现在享受到了过去只是听说过的那些舒适条件。
  • This boat was formerly used on the rivers of China.这船从前航行在中国内河里。
30 arrear wNLyB     
n.欠款
参考例句:
  • He is six weeks in arrear with his rent.他已拖欠房租6周。
  • The arts of medicine and surgery are somewhat in arrear in africa.医疗和外科手术在非洲稍微有些落后。
31 mere rC1xE     
adj.纯粹的;仅仅,只不过
参考例句:
  • That is a mere repetition of what you said before.那不过是重复了你以前讲的话。
  • It's a mere waste of time waiting any longer.再等下去纯粹是浪费时间。
32 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
33 dense aONzX     
a.密集的,稠密的,浓密的;密度大的
参考例句:
  • The general ambushed his troops in the dense woods. 将军把部队埋伏在浓密的树林里。
  • The path was completely covered by the dense foliage. 小路被树叶厚厚地盖了一层。
34 lighter 5pPzPR     
n.打火机,点火器;驳船;v.用驳船运送;light的比较级
参考例句:
  • The portrait was touched up so as to make it lighter.这张画经过润色,色调明朗了一些。
  • The lighter works off the car battery.引燃器利用汽车蓄电池打火。
35 counteracted 73400d69af35e4420879e17c972937fb     
对抗,抵消( counteract的过去式 )
参考例句:
  • This can be counteracted only by very effective insulation. 这只能用非常有效的绝缘来防止。
  • The effect of his preaching was counteracted by the looseness of his behavior. 他讲道的效果被他放荡的生活所抵消了。
36 mightier 76f7dc79cccb0a7cef821be61d0656df     
adj. 强有力的,强大的,巨大的 adv. 很,极其
参考例句:
  • But it ever rises up again, stronger, firmer, mightier. 但是,这种组织总是重新产生,并且一次比一次更强大,更坚固,更有力。 来自英汉非文学 - 共产党宣言
  • Do you believe that the pen is mightier than the sword? 你相信笔杆的威力大于武力吗?
37 density rOdzZ     
n.密集,密度,浓度
参考例句:
  • The population density of that country is 685 per square mile.那个国家的人口密度为每平方英里685人。
  • The region has a very high population density.该地区的人口密度很高。
38 fig L74yI     
n.无花果(树)
参考例句:
  • The doctor finished the fig he had been eating and selected another.这位医生吃完了嘴里的无花果,又挑了一个。
  • You can't find a person who doesn't know fig in the United States.你找不到任何一个在美国的人不知道无花果的。
39 orb Lmmzhy     
n.太阳;星球;v.弄圆;成球形
参考例句:
  • The blue heaven,holding its one golden orb,poured down a crystal wash of warm light.蓝蓝的天空托着金色的太阳,洒下一片水晶般明亮温暖的光辉。
  • It is an emanation from the distant orb of immortal light.它是从远处那个发出不灭之光的天体上放射出来的。
40 laden P2gx5     
adj.装满了的;充满了的;负了重担的;苦恼的
参考例句:
  • He is laden with heavy responsibility.他肩负重任。
  • Dragging the fully laden boat across the sand dunes was no mean feat.将满载货物的船拖过沙丘是一件了不起的事。
41 illustrate IaRxw     
v.举例说明,阐明;图解,加插图
参考例句:
  • The company's bank statements illustrate its success.这家公司的银行报表说明了它的成功。
  • This diagram will illustrate what I mean.这个图表可说明我的意思。
42 densest 196f3886c6c5dffe98d26ccca5d0e045     
密集的( dense的最高级 ); 密度大的; 愚笨的; (信息量大得)难理解的
参考例句:
  • Past Botoi some of the densest jungle forests on Anopopei grew virtually into the water. 过了坊远湾,岛上的莽莽丛林便几乎直长到水中。
  • Earth is the densest of all of these remaining planets. 地球是所剩下行星中最致密的星球。
43 gaseous Hlvy2     
adj.气体的,气态的
参考例句:
  • Air whether in the gaseous or liquid state is a fluid.空气,无论是气态的或是液态的,都是一种流体。
  • Freon exists both in liquid and gaseous states.氟利昂有液态和气态两种形态。
44 demonstration 9waxo     
n.表明,示范,论证,示威
参考例句:
  • His new book is a demonstration of his patriotism.他写的新书是他的爱国精神的证明。
  • He gave a demonstration of the new technique then and there.他当场表演了这种新的操作方法。
45 scrutiny ZDgz6     
n.详细检查,仔细观察
参考例句:
  • His work looks all right,but it will not bear scrutiny.他的工作似乎很好,但是经不起仔细检查。
  • Few wives in their forties can weather such a scrutiny.很少年过四十的妻子经得起这么仔细的观察。
46 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
47 mobility H6rzu     
n.可动性,变动性,情感不定
参考例句:
  • The difference in regional house prices acts as an obstacle to mobility of labour.不同地区房价的差异阻碍了劳动力的流动。
  • Mobility is very important in guerrilla warfare.机动性在游击战中至关重要。
48 remarkably EkPzTW     
ad.不同寻常地,相当地
参考例句:
  • I thought she was remarkably restrained in the circumstances. 我认为她在那种情况下非常克制。
  • He made a remarkably swift recovery. 他康复得相当快。
49 treatise rpWyx     
n.专著;(专题)论文
参考例句:
  • The doctor wrote a treatise on alcoholism.那位医生写了一篇关于酗酒问题的论文。
  • This is not a treatise on statistical theory.这不是一篇有关统计理论的论文。
50 concealed 0v3zxG     
a.隐藏的,隐蔽的
参考例句:
  • The paintings were concealed beneath a thick layer of plaster. 那些画被隐藏在厚厚的灰泥层下面。
  • I think he had a gun concealed about his person. 我认为他当时身上藏有一支枪。
51 kindly tpUzhQ     
adj.和蔼的,温和的,爽快的;adv.温和地,亲切地
参考例句:
  • Her neighbours spoke of her as kindly and hospitable.她的邻居都说她和蔼可亲、热情好客。
  • A shadow passed over the kindly face of the old woman.一道阴影掠过老太太慈祥的面孔。
52 miserable g18yk     
adj.悲惨的,痛苦的;可怜的,糟糕的
参考例句:
  • It was miserable of you to make fun of him.你取笑他,这是可耻的。
  • Her past life was miserable.她过去的生活很苦。
53 scraps 737e4017931b7285cdd1fa3eb9dd77a3     
油渣
参考例句:
  • Don't litter up the floor with scraps of paper. 不要在地板上乱扔纸屑。
  • A patchwork quilt is a good way of using up scraps of material. 做杂拼花布棉被是利用零碎布料的好办法。
54 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
55 quiescence PSoxO     
n.静止
参考例句:
  • The Eurasian seismic belt still remained in quiescence. 亚欧带仍保持平静。 来自互联网
  • Only I know is that it is in quiescence, including the instant moment. 我只知道,它凝固了,包括瞬间。 来自互联网
56 velocity rLYzx     
n.速度,速率
参考例句:
  • Einstein's theory links energy with mass and velocity of light.爱因斯坦的理论把能量同质量和光速联系起来。
  • The velocity of light is about 300000 kilometres per second.光速约为每秒300000公里。
57 elevation bqsxH     
n.高度;海拔;高地;上升;提高
参考例句:
  • The house is at an elevation of 2,000 metres.那幢房子位于海拔两千米的高处。
  • His elevation to the position of General Manager was announced yesterday.昨天宣布他晋升总经理职位。
58 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
59 depressed xu8zp9     
adj.沮丧的,抑郁的,不景气的,萧条的
参考例句:
  • When he was depressed,he felt utterly divorced from reality.他心情沮丧时就感到完全脱离了现实。
  • His mother was depressed by the sad news.这个坏消息使他的母亲意志消沉。
60 peculiarity GiWyp     
n.独特性,特色;特殊的东西;怪癖
参考例句:
  • Each country has its own peculiarity.每个国家都有自己的独特之处。
  • The peculiarity of this shop is its day and nigth service.这家商店的特点是昼夜服务。
61 transit MglzVT     
n.经过,运输;vt.穿越,旋转;vi.越过
参考例句:
  • His luggage was lost in transit.他的行李在运送中丢失。
  • The canal can transit a total of 50 ships daily.这条运河每天能通过50条船。
62 astonishment VvjzR     
n.惊奇,惊异
参考例句:
  • They heard him give a loud shout of astonishment.他们听见他惊奇地大叫一声。
  • I was filled with astonishment at her strange action.我对她的奇怪举动不胜惊异。
63 astronomers 569155f16962e086bd7de77deceefcbd     
n.天文学者,天文学家( astronomer的名词复数 )
参考例句:
  • Astronomers can accurately foretell the date,time,and length of future eclipses. 天文学家能精确地预告未来日食月食的日期、时刻和时长。 来自《简明英汉词典》
  • Astronomers used to ask why only Saturn has rings. 天文学家们过去一直感到奇怪,为什么只有土星有光环。 来自《简明英汉词典》
64 perfectly 8Mzxb     
adv.完美地,无可非议地,彻底地
参考例句:
  • The witnesses were each perfectly certain of what they said.证人们个个对自己所说的话十分肯定。
  • Everything that we're doing is all perfectly above board.我们做的每件事情都是光明正大的。
65 condensation YYyyr     
n.压缩,浓缩;凝结的水珠
参考例句:
  • A cloud is a condensation of water vapour in the atmosphere.云是由大气中的水蒸气凝结成的。
  • He used his sleeve to wipe the condensation off the glass.他用袖子擦掉玻璃上凝结的水珠。
66 rotation LXmxE     
n.旋转;循环,轮流
参考例句:
  • Crop rotation helps prevent soil erosion.农作物轮作有助于防止水土流失。
  • The workers in this workshop do day and night shifts in weekly rotation.这个车间的工人上白班和上夜班每周轮换一次。
67 strata GUVzv     
n.地层(复数);社会阶层
参考例句:
  • The older strata gradually disintegrate.较老的岩层渐渐风化。
  • They represent all social strata.他们代表各个社会阶层。
68 inexplicable tbCzf     
adj.无法解释的,难理解的
参考例句:
  • It is now inexplicable how that development was misinterpreted.当时对这一事态发展的错误理解究竟是怎么产生的,现在已经无法说清楚了。
  • There are many things which are inexplicable by science.有很多事科学还无法解释。
69 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
70 unreasonable tjLwm     
adj.不讲道理的,不合情理的,过度的
参考例句:
  • I know that they made the most unreasonable demands on you.我知道他们对你提出了最不合理的要求。
  • They spend an unreasonable amount of money on clothes.他们花在衣服上的钱太多了。
71 figs 14c6a7d3f55a72d6eeba2b7b66c6d0ab     
figures 数字,图形,外形
参考例句:
  • The effect of ring dyeing is shown in Figs 10 and 11. 环形染色的影响如图10和图11所示。
  • The results in Figs. 4 and 5 show the excellent agreement between simulation and experiment. 图4和图5的结果都表明模拟和实验是相当吻合的。
72 observatory hRgzP     
n.天文台,气象台,瞭望台,观测台
参考例句:
  • Guy's house was close to the observatory.盖伊的房子离天文台很近。
  • Officials from Greenwich Observatory have the clock checked twice a day.格林威治天文台的职员们每天对大钟检查两次。
73 deters fa9038e0dc6ca5820b8bf591f2a1f604     
v.阻止,制止( deter的第三人称单数 )
参考例句:
  • The filth here deters all but the invited guest. 这里污秽不堪,除非有事,外人是裹足不前的。 来自辞典例句
  • Many people believe that capital punishment deters crime. 很多人相信极刑能阻止犯罪。 来自互联网
74 peculiarities 84444218acb57e9321fbad3dc6b368be     
n. 特质, 特性, 怪癖, 古怪
参考例句:
  • the cultural peculiarities of the English 英国人的文化特点
  • He used to mimic speech peculiarities of another. 他过去总是模仿别人讲话的特点。
75 phenomena 8N9xp     
n.现象
参考例句:
  • Ade couldn't relate the phenomena with any theory he knew.艾德无法用他所知道的任何理论来解释这种现象。
  • The object of these experiments was to find the connection,if any,between the two phenomena.这些实验的目的就是探索这两种现象之间的联系,如果存在着任何联系的话。
76 orbs f431f734948f112bf8f823608f1d2e37     
abbr.off-reservation boarding school 在校寄宿学校n.球,天体,圆形物( orb的名词复数 )
参考例句:
  • So strange did It'seem that those dark wild orbs were ignorant of the day. 那双狂热的深色眼珠竟然没有见过天日,这似乎太奇怪了。 来自辞典例句
  • HELPERKALECGOSORB01.wav-> I will channel my power into the orbs! Be ready! 我会把我的力量引导进宝珠里!准备! 来自互联网
77 cavil uUbyt     
v.挑毛病,吹毛求疵
参考例句:
  • A carper will cavil at anything.爱挑剔的人对什么都挑剔。
  • Even he could find nothing to cavil about.连他都挑不出什么毛病来。
78 egress 2qoxd     
n.出去;出口
参考例句:
  • Safe access and egress can be achieved by various methods.可以采用各种方法安全的进入或离开。
  • Drains achieve a ready egress of the liquid blood.引流能为血液提供一个容易的出口。
79 disappearance ouEx5     
n.消失,消散,失踪
参考例句:
  • He was hard put to it to explain her disappearance.他难以说明她为什么不见了。
  • Her disappearance gave rise to the wildest rumours.她失踪一事引起了各种流言蜚语。
80 atmospheric 6eayR     
adj.大气的,空气的;大气层的;大气所引起的
参考例句:
  • Sea surface temperatures and atmospheric circulation are strongly coupled.海洋表面温度与大气环流是密切相关的。
  • Clouds return radiant energy to the surface primarily via the atmospheric window.云主要通过大气窗区向地表辐射能量。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533