小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » A History of Aeronautics » Part II 1903–1920: PROGRESS IN DESIGN I THE BEGINNINGS
选择底色: 选择字号:【大】【中】【小】
Part II 1903–1920: PROGRESS IN DESIGN I THE BEGINNINGS
关注小说网官方公众号(noveltingroom),原版名著免费领。
Although the first actual flight of an aeroplane was made by the Wrights on December 17th, 1903, it is necessary, in considering the progress of design between that period and the present day, to go back to the earlier days of their experiments with ‘gliders2,’ which show the alterations4 in design made by them in their step-by-step progress to a flying machine proper, and give a clear idea of the stage at which they had arrived in the art of aeroplane design at the time of their first flights.

They started by carefully surveying the work of previous experimenters, such as Lilienthal and Chanute, and from the lesson of some of the failures of these pioneers evolved certain new principles which were embodied6 in their first glider3, built in 1900. In the first place, instead of relying upon the shifting of the operator’s body to obtain balance, which had proved too slow to be reliable, they fitted in front of the main supporting surfaces what we now call an ‘elevator,’ which could be flexed7, to control the longitudinal balance, from where the operator lay prone8 upon the main supporting surfaces. The second main innovation which they incorporated in this first glider, and the principle of which is still used in every aeroplane in existence, was the attainment9 of lateral10 balance by warping11 the extremities12 of the main planes. The278 effect of warping or pulling down the extremity13 of the wing on one side was to increase its lift and so cause that side to rise. In the first two gliders this control was also used for steering14 to right and left. Both these methods of control were novel for other than model work, as previous experimenters, such as Lilienthal and Pilcher, had relied entirely15 upon moving the legs or shifting the position of the body to control the longitudinal and lateral motions of their gliders. For the main supporting surfaces of the glider the biplane system of Chanute’s gliders was adopted with certain modifications17, while the curve of the wings was founded upon the calculations of Lilienthal as to wind pressure and consequent lift of the plane.

This first glider was tested on the Kill Devil Hill sandhills in North Carolina in the summer of 1900, and proved at any rate the correctness of the principles of the front elevator and warping wings, though its designers were puzzled by the fact that the lift was less than they expected; whilst the ‘drag’ (as we call it), or resistance, was also considerably18 lower than their predictions. The 1901 machine was, in consequence, nearly doubled in area—the lifting surface being increased from 165 to 308 square feet—the first trial taking place on July 27th, 1901, again at Kill Devil Hill. It immediately appeared that something was wrong, as the machine dived straight to the ground, and it was only after the operator’s position had been moved nearly a foot back from what had been calculated as the correct position that the machine would glide1—and even then the elevator had to be used far more strongly than in the previous year’s glider. After a good deal of thought the apparent solution of the trouble was finally found.279 This consisted in the fact that with curved surfaces, while at large angles the centre of pressure moves forward as the angle decreases, when a certain limit of angle is reached it travels suddenly backwards20 and causes the machine to dive. The Wrights had known of this tendency from Lilienthal’s researches, but had imagined that the phenomenon would disappear if they used a fairly lightly cambered—or curved—surface with a very abrupt21 curve at the front. Having discovered what appeared to be the cause they surmounted22 the difficulty by ‘trussing down’ the camber of the wings, with the result that they at once got back to the old conditions of the previous year and could control the machine readily with small movements of the elevator, even being able to follow undulations in the ground. They still found, however, that the lift was not as great as it should have been; while the drag remained, as in the previous glider, surprisingly small. This threw doubt on previous figures as to wind resistance and pressure on curved surfaces; but at the same time confirmed (and this was a most important result) Lilienthal’s previously23 questioned theory that at small angles the pressure on a curved surface instead of being normal, or at right angles to, the chord is in fact inclined in front of the perpendicular24. The result of this is that the pressure actually tends to draw the machine forward into the wind—hence the small amount of drag, which had puzzled Wilbur and Orville Wright.

Another lesson which was learnt from these first two years of experiment, was that where, as in a biplane, two surfaces are superposed one above the other, each of them has somewhat less lift than it would have if used alone. The experimenters were also still in doubt280 as to the efficiency of the warping method of controlling the lateral balance as it gave rise to certain phenomena25 which puzzled them, the machine turning towards the wing having the greater angle, which seemed also to touch the ground first, contrary to their expectations. Accordingly, on returning to Dayton towards the end of 1901, they set themselves to solve the various problems which had appeared and started on a lengthy26 series of experiments to check the previous figures as to wind resistance and lift of curved surfaces, besides setting themselves to grapple with the difficulty of lateral control. They accordingly constructed for themselves at their home in Dayton a wind tunnel 16 inches square by 6 feet long in which they measured the lift and ‘drag’ of more than two hundred miniature wings. In the course of these tests they for the first time produced comparative results of the lift of oblong and square surfaces, with the result that they re-discovered the importance of ‘aspect ratio’—the ratio of length to breadth of planes. As a result, in the next year’s glider the aspect ration5 of the wings was increased from the three to one of the earliest model to about six to one, which is approximately the same as that used in the machines of to-day. Further than that, they discussed the question of lateral stability, and came to the conclusion that the cause of the trouble was that the effect of warping down one wing was to increase the resistance of, and consequently slow down, that wing to such an extent that its lift was reduced sufficiently27 to wipe out the anticipated increase in lift resulting from the warping. From this they deduced that if the speed of the warped28 wing could be controlled the advantage of increasing the angle by warping could be utilised as they originally281 intended. They therefore decided29 to fit a vertical30 fin19 at the rear which, if the machine attempted to turn, would be exposed more and more to the wind and so stop the turning motion by offering increased resistance.

As a result of this laboratory research work the third Wright glider, which was taken to Kill Devil Hill in September, 1902, was far more efficient aerodynamically than either of its two predecessors31, and was fitted with a fixed32 vertical fin at the rear in addition to the movable elevator in front. According to Mr Griffith Brewer33,8 this third glider contained 305 square feet of surface; though there may possibly be a mistake here, as he states9 the surface of the previous year’s glider to have been only 290 square feet, whereas Wilbur Wright himself10 states it to have been 308 square feet. The matter is not, perhaps, save historically, of much importance, except that the gliders are believed to have been progressively larger, and therefore if we accept Wilbur Wright’s own figure of the surface of the second glider, the third must have had a greater area than that given by Mr Griffith Brewer. Unfortunately, no evidence of the Wright Brothers themselves on this point is available.

The first glide of the 1902 season was made on September 17th of that year, and the new machine at once showed itself an improvement on its predecessors, though subsequent trials showed that the difficulty of lateral balance had not been entirely overcome. It was decided, therefore, to turn the vertical fin at the rear into a rudder by making it movable. At the same time it was realised282 that there was a definite relation between lateral balance and directional control, and the rudder controls and wing-warping wires were accordingly connected. This ended the pioneer gliding34 experiments of Wilbur and Orville Wright—though further glides35 were made in subsequent years—as the following year, 1903, saw the first power-driven machine leave the ground.

To recapitulate—in the course of these original experiments the Wrights confirmed Lilienthal’s theory of the reversal of the centre of pressure on cambered surfaces at small angles of incidence: they confirmed the importance of high aspect ratio in respect to lift: they had evolved new and more accurate tables of lift and pressure on cambered surfaces: they were the first to use a movable horizontal elevator for controlling height: they were the first to adjust the wings to different angles of incidence to maintain lateral balance: and they were the first to use the movable rudder and adjustable36 wings in combination.

They now considered that they had gone far enough to justify37 them in building a power-driven ‘flier,’ as they called their first aeroplane. They could find no suitable engine and so proceeded to build for themselves an internal combustion38 engine, which was designed to give 8 horse-power, but when completed actually developed about 12–15 horse-power and weighed 240 lbs. The complete machine weighed about 750 lbs. Further details of the first Wright aeroplane are difficult to obtain, and even those here given should be received with some caution. The first flight was made on December 17th, 1903, and lasted 12 seconds. Others followed immediately, and the fourth lasted 59 seconds, a distance of 852 feet being covered against a 20-mile wind.

283 The following year they transferred operations to a field outside Dayton, Ohio (their home), and there they flew a somewhat larger and heavier machine with which on September 20th, 1904, they completed the first circle in the air. In this machine for the first time the pilot had a seat; all the previous experiments having been carried out with the operator lying prone on the lower wing. This was followed next year by another still larger machine, and on it they carried out many flights. During the course of these flights they satisfied themselves as to the cause of a phenomenon which had puzzled them during the previous year and caused them to fear that they had not solved the problem of lateral control. They found that on occasions—always when on a turn—the machine began to slide down towards the ground and that no amount of warping could stop it. Finally it was found that if the nose of the machine was tilted39 down a recovery could be effected; from which they concluded that what actually happened was that the machine, ‘owing to the increased load caused by centrifugal force,’ had insufficient40 power to maintain itself in the air and therefore lost speed until a point was reached at which the controls became inoperative. In other words, this was the first experience of ‘stalling on a turn,’ which is a danger against which all embryo41 pilots have to guard in the early stages of their training.

The 1905 machine was, like its predecessors, a biplane with a biplane elevator in front and a double vertical rudder in rear. The span was 40 feet, the chord of the wings being 6 feet and the gap between them about the same. The total area was about 600 square feet which supported a total weight of 925 lbs.; while the motor was 12 to 15 horse-power driving two284 propellers43 on each side behind the main planes through chains and giving the machine a speed of about 30 m.p.h. One of these chains was crossed so that the propellers revolved44 in opposite directions to avoid the torque which it was feared would be set up if they both revolved the same way. The machine was not fitted with a wheeled undercarriage but was carried on two skids45, which also acted as outriggers to carry the elevator. Consequently, a mechanical method of launching had to be evolved and the machine received initial velocity46 from a rail, along which it was drawn47 by the impetus48 provided by the falling of a weight from a wooden tower or ‘pylon.’ As a result of this the Wright aeroplane in its original form had to be taken back to its starting rail after each flight, and could not restart from the point of alighting. Perhaps, in comparison with French machines of more or less contemporary date (evolved on independent lines in ignorance of the Americans’ work), the chief feature of the Wright biplane of 1905 was that it relied entirely upon the skill of the operator for its stability; whereas in France some attempt was being made, although perhaps not very successfully, to make the machine automatically stable laterally49. The performance of the Wrights in carrying a loading of some 60 lbs. per horse-power is one which should not be overlooked. The wing loading was about 1? lbs. per square foot.

About the same time that the Wrights were carrying out their power-driven experiments, a band of pioneers was quite independently beginning to approach success in France. In practically every case, however, they started from a somewhat different standpoint and took as their basic idea the cellular50 (or box) kite. This form285 of kite, consisting of two superposed surfaces connected at each end by a vertical panel or curtain of fabric51, had proved extremely successful for man-carrying purposes, and, therefore, it was little wonder that several minds conceived the idea of attempting to fly by fitting a series of box-kites with an engine. The first to achieve success was M. Santos-Dumont, the famous Brazilian pioneer-designer of airships, who, on November 12th, 1906, made several flights, the last of which covered a little over 700 feet. Santos-Dumont’s machine consisted essentially52 of two box-kites, forming the main wings, one on each side of the body, in which the pilot stood, and at the front extremity of which was another movable box-kite to act as elevator and rudder. The curtains at the ends were intended to give lateral stability, which was further ensured by setting the wings slightly inclined upwards53 from the centre, so that when seen from the front they formed a wide V. This feature is still to be found in many aeroplanes to-day and has come to be known as the ‘dihedral.’ The motor was at first of 24 horse-power, for which later a 50 horse-power Antoinette engine was substituted; whilst a three-wheeled undercarriage was provided, so that the machine could start without external mechanical aid. The machine was constructed of bamboo and steel, the weight being as low as 352 lbs. The span was 40 feet, the length being 33 feet, with a total surface of main planes of 860 square feet. It will thus be seen—for comparison with the Wright machine—that the weight per horse-power (with the 50 horse-power engine) was only 7 lbs., while the wing loading was equally low at ? lb. per square foot.

The main features of the Santos-Dumont machine286 were the box-kite form of construction, with a dihedral angle on the main planes, and the forward elevator which could be moved in any direction and therefore acted in the same way as the rudder at the rear of the Wright biplane. It had a single propeller42 revolving54 in the centre behind the wings and was fitted with an undercarriage incorporated in the machine.

The other chief French experimenters at this period were the Voisin Frères, whose first two machines—identical in form—were sold to Delagrange and H. Farman, which has sometimes caused confusion, the two purchasers being credited with the design they bought. The Voisins, like the Wrights, based their designs largely on the experimental work of Lilienthal, Langley, Chanute, and others, though they also carried out tests on the lifting properties of aerofoils in a wind tunnel of their own. Their first machines, like those of Santos-Dumont, showed the effects of experimenting with box-kites, some of which they had built for M. Ernest Archdeacon in 1904. In their case the machine, which was again a biplane, had, like both the others previously mentioned, an elevator in front—though in this case of monoplane form—and, as in the Wright, a rudder was fitted in rear of the main planes. The Voisins, however, fitted a fixed biplane horizontal ‘tail’—in an effort to obtain a measure of automatic longitudinal stability—between the two surfaces of which the single rudder worked. For lateral stability they depended entirely on end curtains between the upper and lower surfaces of both the main planes and biplane tail surfaces. They, like Santos-Dumont, fitted a wheeled undercarriage, so that the machine was self-contained. The Voisin machine, then, was intended to be automatically287 stable in both senses; whereas the Wrights deliberately55 produced a machine which was entirely dependent upon the pilot’s skill for its stability. The dimensions of the Voisin may be given for comparative purposes, and were as follows: Span 33 feet with a chord (width from back to front) of main planes of 6? feet, giving a total area of 430 square feet. The 50 horse-power Antoinette engine, which was enclosed in the body (or ‘nacelle’) in the front of which the pilot sat, drove a propeller behind, revolving between the outriggers carrying the tail. The total weight, including Farman as pilot, is given as 1,540 lbs., so that the machine was much heavier than either of the others; the weight per horse-power being midway between the Santos-Dumont and the Wright at 31 lbs. per square foot, while the wing loading was considerably greater than either at 3? lbs. per square foot. The Voisin machine was experimented with by Farman and Delagrange from about June 1907 onwards, and was in the subsequent years developed by Farman; and right up to the commencement of the War upheld the principles of the box-kite method of construction for training purposes. The chief modification16 of the original design was the addition of flaps (or ailerons) at the rear extremities of the main planes to give lateral control, in a manner analogous56 to the wing-warping method invented by the Wrights, as a result of which the end curtains between the planes were abolished. An additional elevator was fitted at the rear of the fixed biplane tail, which eventually led to the discarding of the front elevator altogether. During the same period the Wright machine came into line with the others by the fitting of a wheeled undercarriage integral with the machine.288 A fixed horizontal tail was also added to the rear rudder, to which a movable elevator was later attached; and, finally, the front elevator was done away with. It will thus be seen that having started from the very different standpoints of automatic stability and complete control by the pilot, the Voisin (as developed in the Farman) and Wright machines, through gradual evolution finally resulted in aeroplanes of similar characteristics embodying57 a modicum58 of both features.

Before proceeding59 to the next stage of progress mention should be made of the experimental work of Captain Ferber in France. This officer carried out a large number of experiments with gliders contemporarily with the Wrights, adopting—like them—the Chanute biplane principle. He adopted the front elevator from the Wrights, but immediately went a step farther by also fitting a fixed tail in rear, which did not become a feature of the Wright machine until some seven or eight years later. He built and appeared to have flown a machine fitted with a motor in 1905, and was commissioned to go to America by the French War Office on a secret mission to the Wrights. Unfortunately, no complete account of his experiments appears to exist, though it can be said that his work was at least as important as that of any of the other pioneers mentioned.

点击收听单词发音收听单词发音  

1 glide 2gExT     
n./v.溜,滑行;(时间)消逝
参考例句:
  • We stood in silence watching the snake glide effortlessly.我们噤若寒蝉地站着,眼看那条蛇逍遥自在地游来游去。
  • So graceful was the ballerina that she just seemed to glide.那芭蕾舞女演员翩跹起舞,宛如滑翔。
2 gliders a7deb46dbc14e35d759f16adee20c410     
n.滑翔机( glider的名词复数 )
参考例句:
  • The albatross is the king of gliders. 信天翁是滑翔鸟类之王。 来自《用法词典》
  • For three summers, may bested and improved their gliders. 他们花了三个夏天不断地测试、改进。 来自英汉非文学 - 科学史
3 glider wgNxU     
n.滑翔机;滑翔导弹
参考例句:
  • The glider was soaring above the valley.那架滑翔机在山谷上空滑翔。
  • The pilot managed to land the glider on a safe place.那个驾驶员设法让滑翔机着陆到一个安全的地方。
4 alterations c8302d4e0b3c212bc802c7294057f1cb     
n.改动( alteration的名词复数 );更改;变化;改变
参考例句:
  • Any alterations should be written in neatly to the left side. 改动部分应书写清晰,插在正文的左侧。 来自《简明英汉词典》
  • Gene mutations are alterations in the DNA code. 基因突变是指DNA 密码的改变。 来自《简明英汉词典》
5 ration CAxzc     
n.定量(pl.)给养,口粮;vt.定量供应
参考例句:
  • The country cut the bread ration last year.那个国家去年削减面包配给量。
  • We have to ration the water.我们必须限量用水。
6 embodied 12aaccf12ed540b26a8c02d23d463865     
v.表现( embody的过去式和过去分词 );象征;包括;包含
参考例句:
  • a politician who embodied the hopes of black youth 代表黑人青年希望的政治家
  • The heroic deeds of him embodied the glorious tradition of the troops. 他的英雄事迹体现了军队的光荣传统。 来自《简明英汉词典》
7 flexed 703e75e8210e20f0cb60ad926085640e     
adj.[医]曲折的,屈曲v.屈曲( flex的过去式和过去分词 );弯曲;(为准备大干而)显示实力;摩拳擦掌
参考例句:
  • He stretched and flexed his knees to relax himself. 他伸屈膝关节使自己放松一下。 来自辞典例句
  • He flexed his long stringy muscles manfully. 他孔武有力地弯起膀子,显露出细长条的肌肉。 来自辞典例句
8 prone 50bzu     
adj.(to)易于…的,很可能…的;俯卧的
参考例句:
  • Some people are prone to jump to hasty conclusions.有些人往往作出轻率的结论。
  • He is prone to lose his temper when people disagree with him.人家一不同意他的意见,他就发脾气。
9 attainment Dv3zY     
n.达到,到达;[常pl.]成就,造诣
参考例句:
  • We congratulated her upon her attainment to so great an age.我们祝贺她高寿。
  • The attainment of the success is not easy.成功的取得并不容易。
10 lateral 83ey7     
adj.侧面的,旁边的
参考例句:
  • An airfoil that controls lateral motion.能够控制横向飞行的机翼。
  • Mr.Dawson walked into the court from a lateral door.道森先生从一个侧面的门走进法庭。
11 warping d26fea1f666f50ab33e246806ed4829b     
n.翘面,扭曲,变形v.弄弯,变歪( warp的现在分词 );使(行为等)不合情理,使乖戾,
参考例句:
  • Tilting, warping, and changes in elevation can seriously affect canals and shoreline facilities of various kinks. 倾斜、翘曲和高程变化可以严重地影响水渠和各种岸边设备。 来自辞典例句
  • A warping, bending, or cracking, as that by excessive force. 翘曲,弯曲,裂开:翘曲、弯曲或裂开,如过强的外力引起。 来自互联网
12 extremities AtOzAr     
n.端点( extremity的名词复数 );尽头;手和足;极窘迫的境地
参考例句:
  • She was most noticeable, I thought, in respect of her extremities. 我觉得她那副穷极可怜的样子实在太惹人注目。 来自辞典例句
  • Winters may be quite cool at the northwestern extremities. 西北边区的冬天也可能会相当凉。 来自辞典例句
13 extremity tlgxq     
n.末端,尽头;尽力;终极;极度
参考例句:
  • I hope you will help them in their extremity.我希望你能帮助在穷途末路的他们。
  • What shall we do in this extremity?在这种极其困难的情况下我们该怎么办呢?
14 steering 3hRzbi     
n.操舵装置
参考例句:
  • He beat his hands on the steering wheel in frustration. 他沮丧地用手打了几下方向盘。
  • Steering according to the wind, he also framed his words more amicably. 他真会看风使舵,口吻也马上变得温和了。
15 entirely entirely     
ad.全部地,完整地;完全地,彻底地
参考例句:
  • The fire was entirely caused by their neglect of duty. 那场火灾完全是由于他们失职而引起的。
  • His life was entirely given up to the educational work. 他的一生统统献给了教育工作。
16 modification tEZxm     
n.修改,改进,缓和,减轻
参考例句:
  • The law,in its present form,is unjust;it needs modification.现行的法律是不公正的,它需要修改。
  • The design requires considerable modification.这个设计需要作大的修改。
17 modifications aab0760046b3cea52940f1668245e65d     
n.缓和( modification的名词复数 );限制;更改;改变
参考例句:
  • The engine was pulled apart for modifications and then reassembled. 发动机被拆开改型,然后再组装起来。 来自《简明英汉词典》
  • The original plan had undergone fairly extensive modifications. 原计划已经作了相当大的修改。 来自《简明英汉词典》
18 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
19 fin qkexO     
n.鳍;(飞机的)安定翼
参考例句:
  • They swim using a small fin on their back.它们用背上的小鳍游动。
  • The aircraft has a long tail fin.那架飞机有一个长长的尾翼。
20 backwards BP9ya     
adv.往回地,向原处,倒,相反,前后倒置地
参考例句:
  • He turned on the light and began to pace backwards and forwards.他打开电灯并开始走来走去。
  • All the girls fell over backwards to get the party ready.姑娘们迫不及待地为聚会做准备。
21 abrupt 2fdyh     
adj.突然的,意外的;唐突的,鲁莽的
参考例句:
  • The river takes an abrupt bend to the west.这河突然向西转弯。
  • His abrupt reply hurt our feelings.他粗鲁的回答伤了我们的感情。
22 surmounted 74f42bdb73dca8afb25058870043665a     
战胜( surmount的过去式和过去分词 ); 克服(困难); 居于…之上; 在…顶上
参考例句:
  • She was well aware of the difficulties that had to be surmounted. 她很清楚必须克服哪些困难。
  • I think most of these obstacles can be surmounted. 我认为这些障碍大多数都是可以克服的。
23 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
24 perpendicular GApy0     
adj.垂直的,直立的;n.垂直线,垂直的位置
参考例句:
  • The two lines of bones are set perpendicular to one another.这两排骨头相互垂直。
  • The wall is out of the perpendicular.这墙有些倾斜。
25 phenomena 8N9xp     
n.现象
参考例句:
  • Ade couldn't relate the phenomena with any theory he knew.艾德无法用他所知道的任何理论来解释这种现象。
  • The object of these experiments was to find the connection,if any,between the two phenomena.这些实验的目的就是探索这两种现象之间的联系,如果存在着任何联系的话。
26 lengthy f36yA     
adj.漫长的,冗长的
参考例句:
  • We devoted a lengthy and full discussion to this topic.我们对这个题目进行了长时间的充分讨论。
  • The professor wrote a lengthy book on Napoleon.教授写了一部有关拿破仑的巨著。
27 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
28 warped f1a38e3bf30c41ab80f0dce53b0da015     
adj.反常的;乖戾的;(变)弯曲的;变形的v.弄弯,变歪( warp的过去式和过去分词 );使(行为等)不合情理,使乖戾,
参考例句:
  • a warped sense of humour 畸形的幽默感
  • The board has warped. 木板翘了。 来自《现代汉英综合大词典》
29 decided lvqzZd     
adj.决定了的,坚决的;明显的,明确的
参考例句:
  • This gave them a decided advantage over their opponents.这使他们比对手具有明显的优势。
  • There is a decided difference between British and Chinese way of greeting.英国人和中国人打招呼的方式有很明显的区别。
30 vertical ZiywU     
adj.垂直的,顶点的,纵向的;n.垂直物,垂直的位置
参考例句:
  • The northern side of the mountain is almost vertical.这座山的北坡几乎是垂直的。
  • Vertical air motions are not measured by this system.垂直气流的运动不用这种系统来测量。
31 predecessors b59b392832b9ce6825062c39c88d5147     
n.前任( predecessor的名词复数 );前辈;(被取代的)原有事物;前身
参考例句:
  • The new government set about dismantling their predecessors' legislation. 新政府正着手废除其前任所制定的法律。 来自《简明英汉词典》
  • Will new plan be any more acceptable than its predecessors? 新计划比原先的计划更能令人满意吗? 来自《简明英汉词典》
32 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
33 brewer brewer     
n. 啤酒制造者
参考例句:
  • Brewer is a very interesting man. 布鲁尔是一个很有趣的人。
  • I decided to quit my job to become a brewer. 我决定辞职,做一名酿酒人。
34 gliding gliding     
v. 滑翔 adj. 滑动的
参考例句:
  • Swans went gliding past. 天鹅滑行而过。
  • The weather forecast has put a question mark against the chance of doing any gliding tomorrow. 天气预报对明天是否能举行滑翔表示怀疑。
35 glides 31de940e5df0febeda159e69e005a0c9     
n.滑行( glide的名词复数 );滑音;音渡;过渡音v.滑动( glide的第三人称单数 );掠过;(鸟或飞机 ) 滑翔
参考例句:
  • The new dance consists of a series of glides. 这种新舞蹈中有一连串的滑步。 来自《简明英汉词典》
  • The stately swan glides gracefully on the pond. 天鹅在池面上优美地游动。 来自《简明英汉词典》
36 adjustable vzOzkc     
adj.可调整的,可校准的
参考例句:
  • More expensive cameras have adjustable focusing.比较贵的照相机有可调焦距。
  • The chair has the virtue of being adjustable.这种椅子具有可调节的优点。
37 justify j3DxR     
vt.证明…正当(或有理),为…辩护
参考例句:
  • He tried to justify his absence with lame excuses.他想用站不住脚的借口为自己的缺席辩解。
  • Can you justify your rude behavior to me?你能向我证明你的粗野行为是有道理的吗?
38 combustion 4qKzS     
n.燃烧;氧化;骚动
参考例句:
  • We might be tempted to think of combustion.我们也许会联想到氧化。
  • The smoke formed by their combustion is negligible.由它燃烧所生成的烟是可忽略的。
39 tilted 3gtzE5     
v. 倾斜的
参考例句:
  • Suddenly the boat tilted to one side. 小船突然倾向一侧。
  • She tilted her chin at him defiantly. 她向他翘起下巴表示挑衅。
40 insufficient L5vxu     
adj.(for,of)不足的,不够的
参考例句:
  • There was insufficient evidence to convict him.没有足够证据给他定罪。
  • In their day scientific knowledge was insufficient to settle the matter.在他们的时代,科学知识还不能足以解决这些问题。
41 embryo upAxt     
n.胚胎,萌芽的事物
参考例句:
  • They are engaging in an embryo research.他们正在进行一项胚胎研究。
  • The project was barely in embryo.该计划只是个雏形。
42 propeller tRVxe     
n.螺旋桨,推进器
参考例句:
  • The propeller started to spin around.螺旋桨开始飞快地旋转起来。
  • A rope jammed the boat's propeller.一根绳子卡住了船的螺旋桨。
43 propellers 6e53e63713007ce36dac451344bb87d2     
n.螺旋桨,推进器( propeller的名词复数 )
参考例句:
  • The water was thrashing and churning about under the propellers. 水在螺旋桨下面打旋、翻滚。 来自辞典例句
  • The ship's propellers churned the waves to foam. 轮船的推进器将海浪搅出泡沫。 来自辞典例句
44 revolved b63ebb9b9e407e169395c5fc58399fe6     
v.(使)旋转( revolve的过去式和过去分词 );细想
参考例句:
  • The fan revolved slowly. 电扇缓慢地转动着。
  • The wheel revolved on its centre. 轮子绕中心转动。 来自《简明英汉词典》
45 skids babb329807fdd220b6aa39b509695123     
n.滑向一侧( skid的名词复数 );滑道;滚道;制轮器v.(通常指车辆) 侧滑( skid的第三人称单数 );打滑;滑行;(住在)贫民区
参考例句:
  • The aging football player was playing on the skids. 那个上了年纪的足球运动员很明显地在走下坡路。 来自辞典例句
  • It's a shame that he hit the skids. 很遗憾他消沉了。 来自辞典例句
46 velocity rLYzx     
n.速度,速率
参考例句:
  • Einstein's theory links energy with mass and velocity of light.爱因斯坦的理论把能量同质量和光速联系起来。
  • The velocity of light is about 300000 kilometres per second.光速约为每秒300000公里。
47 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
48 impetus L4uyj     
n.推动,促进,刺激;推动力
参考例句:
  • This is the primary impetus behind the economic recovery.这是促使经济复苏的主要动力。
  • Her speech gave an impetus to my ideas.她的讲话激发了我的思绪。
49 laterally opIzAf     
ad.横向地;侧面地;旁边地
参考例句:
  • Shafts were sunk, with tunnels dug laterally. 竖井已经打下,并且挖有横向矿道。
  • When the plate becomes unstable, it buckles laterally. 当板失去稳定时,就发生横向屈曲。
50 cellular aU1yo     
adj.移动的;细胞的,由细胞组成的
参考例句:
  • She has a cellular telephone in her car.她的汽车里有一部无线通讯电话机。
  • Many people use cellular materials as sensitive elements in hygrometers.很多人用蜂窝状的材料作为测量温度的传感元件。
51 fabric 3hezG     
n.织物,织品,布;构造,结构,组织
参考例句:
  • The fabric will spot easily.这种织品很容易玷污。
  • I don't like the pattern on the fabric.我不喜欢那块布料上的图案。
52 essentially nntxw     
adv.本质上,实质上,基本上
参考例句:
  • Really great men are essentially modest.真正的伟人大都很谦虚。
  • She is an essentially selfish person.她本质上是个自私自利的人。
53 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
54 revolving 3jbzvd     
adj.旋转的,轮转式的;循环的v.(使)旋转( revolve的现在分词 );细想
参考例句:
  • The theatre has a revolving stage. 剧院有一个旋转舞台。
  • The company became a revolving-door workplace. 这家公司成了工作的中转站。
55 deliberately Gulzvq     
adv.审慎地;蓄意地;故意地
参考例句:
  • The girl gave the show away deliberately.女孩故意泄露秘密。
  • They deliberately shifted off the argument.他们故意回避这个论点。
56 analogous aLdyQ     
adj.相似的;类似的
参考例句:
  • The two situations are roughly analogous.两种情況大致相似。
  • The company is in a position closely analogous to that of its main rival.该公司与主要竞争对手的处境极为相似。
57 embodying 6e759eac57252cfdb6d5d502ccc75f4b     
v.表现( embody的现在分词 );象征;包括;包含
参考例句:
  • Every instrument constitutes an independent contract embodying a payment obligation. 每张票据都构成一份独立的体现支付义务的合同。 来自口语例句
  • Fowth, The aesthetical transcendency and the beauty embodying the man's liberty. \" 第四部分:审美的超越和作为人类自由最终体现的“美”。 来自互联网
58 modicum Oj3yd     
n.少量,一小份
参考例句:
  • If he had a modicum of sense,he wouldn't do such a foolish thing.要是他稍有一点理智,他决不会做出如此愚蠢的事来。
  • There's not even a modicum of truth in her statement.她说的话没有一点是真的。
59 proceeding Vktzvu     
n.行动,进行,(pl.)会议录,学报
参考例句:
  • This train is now proceeding from Paris to London.这次列车从巴黎开往伦敦。
  • The work is proceeding briskly.工作很有生气地进展着。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533