小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » 物种起源 On the Origin of Species » Chapter 9 On The Imperfection Of The Geological Record
选择底色: 选择字号:【大】【中】【小】
Chapter 9 On The Imperfection Of The Geological Record
关注小说网官方公众号(noveltingroom),原版名著免费领。

On the absence of intermediate varieties at the present day. On the nature of extinct intermediate varieties; on their number. On the vast lapse1 of time, as inferred from the rate of deposition2 and of denudation3. On the poorness of our palaeontological collections. On the intermittence4 of geological formations. On the absence of intermediate varieties in any one formation. On the sudden appearance of groups of species. On their sudden appearance in the lowest known fossiliferous strata5.

In the sixth chapter I enumerated6 the chief objections which might be justly urged against the views maintained in this volume. Most of them have now been discussed. One, namely the distinctness of specific forms, and their not being blended together by innumerable transitional links, is a very obvious difficulty. I assigned reasons why such links do not commonly occur at the present day, under the circumstances apparently7 most favourable8 for their presence, namely on an extensive and continuous area with graduated physical conditions. I endeavoured to show, that the life of each species depends in a more important manner on the presence of other already defined organic forms, than on climate; and, therefore, that the really governing conditions of life do not graduate away quite insensibly like heat or moisture. I endeavoured, also, to show that intermediate varieties, from existing in lesser9 numbers than the forms which they connect, will generally be beaten out and exterminated10 during the course of further modification12 and improvement. The main cause, however, of innumerable intermediate links not now occurring everywhere throughout nature depends on the very process of natural selection, through which new varieties continually take the places of and exterminate11 their parent-forms. But just in proportion as this process of extermination13 has acted on an enormous scale, so must the number of intermediate varieties, which have formerly14 existed on the earth, be truly enormous. Why then is not every geological formation and every stratum15 full of such intermediate links? Geology assuredly does not reveal any such finely graduated organic chain; and this, perhaps, is the most obvious and gravest objection which can be urged against my theory. The explanation lies, as I believe, in the extreme imperfection of the geological record.

In the first place it should always be borne in mind what sort of intermediate forms must, on my theory, have formerly existed. I have found it difficult, when looking at any two species, to avoid picturing to myself, forms DIRECTLY intermediate between them. But this is a wholly false view; we should always look for forms intermediate between each species and a common but unknown progenitor16; and the progenitor will generally have differed in some respects from all its modified descendants. To give a simple illustration: the fantail and pouter pigeons have both descended17 from the rock-pigeon; if we possessed18 all the intermediate varieties which have ever existed, we should have an extremely close series between both and the rock-pigeon; but we should have no varieties directly intermediate between the fantail and pouter; none, for instance, combining a tail somewhat expanded with a crop somewhat enlarged, the characteristic features of these two breeds. These two breeds, moreover, have become so much modified, that if we had no historical or indirect evidence regarding their origin, it would not have been possible to have determined19 from a mere20 comparison of their structure with that of the rock-pigeon, whether they had descended from this species or from some other allied21 species, such as C. oenas.

So with natural species, if we look to forms very distinct, for instance to the horse and tapir, we have no reason to suppose that links ever existed directly intermediate between them, but between each and an unknown common parent. The common parent will have had in its whole organisation22 much general resemblance to the tapir and to the horse; but in some points of structure may have differed considerably23 from both, even perhaps more than they differ from each other. Hence in all such cases, we should be unable to recognise the parent-form of any two or more species, even if we closely compared the structure of the parent with that of its modified descendants, unless at the same time we had a nearly perfect chain of the intermediate links.

It is just possible by my theory, that one of two living forms might have descended from the other; for instance, a horse from a tapir; and in this case DIRECT intermediate links will have existed between them. But such a case would imply that one form had remained for a very long period unaltered, whilst its descendants had undergone a vast amount of change; and the principle of competition between organism and organism, between child and parent, will render this a very rare event; for in all cases the new and improved forms of life will tend to supplant24 the old and unimproved forms.

By the theory of natural selection all living species have been connected with the parent-species of each genus, by differences not greater than we see between the varieties of the same species at the present day; and these parent-species, now generally extinct, have in their turn been similarly connected with more ancient species; and so on backwards25, always converging26 to the common ancestor of each great class. So that the number of intermediate and transitional links, between all living and extinct species, must have been inconceivably great. But assuredly, if this theory be true, such have lived upon this earth.

ON THE LAPSE OF TIME.

Independently of our not finding fossil remains27 of such infinitely28 numerous connecting links, it may be objected, that time will not have sufficed for so great an amount of organic change, all changes having been effected very slowly through natural selection. It is hardly possible for me even to recall to the reader, who may not be a practical geologist29, the facts leading the mind feebly to comprehend the lapse of time. He who can read Sir Charles Lyell's grand work on the Principles of Geology, which the future historian will recognise as having produced a revolution in natural science, yet does not admit how incomprehensibly vast have been the past periods of time, may at once close this volume. Not that it suffices to study the Principles of Geology, or to read special treatises30 by different observers on separate formations, and to mark how each author attempts to give an inadequate31 idea of the duration of each formation or even each stratum. A man must for years examine for himself great piles of superimposed strata, and watch the sea at work grinding down old rocks and making fresh sediment32, before he can hope to comprehend anything of the lapse of time, the monuments of which we see around us.

It is good to wander along lines of sea-coast, when formed of moderately hard rocks, and mark the process of degradation33. The tides in most cases reach the cliffs only for a short time twice a day, and the waves eat into them only when they are charged with sand or pebbles34; for there is reason to believe that pure water can effect little or nothing in wearing away rock. At last the base of the cliff is undermined, huge fragments fall down, and these remaining fixed35, have to be worn away, atom by atom, until reduced in size they can be rolled about by the waves, and then are more quickly ground into pebbles, sand, or mud. But how often do we see along the bases of retreating cliffs rounded boulders36, all thickly clothed by marine37 productions, showing how little they are abraded38 and how seldom they are rolled about! Moreover, if we follow for a few miles any line of rocky cliff, which is undergoing degradation, we find that it is only here and there, along a short length or round a promontory39, that the cliffs are at the present time suffering. The appearance of the surface and the vegetation show that elsewhere years have elapsed since the waters washed their base.

He who most closely studies the action of the sea on our shores, will, I believe, be most deeply impressed with the slowness with which rocky coasts are worn away. The observations on this head by Hugh Miller40, and by that excellent observer Mr. Smith of Jordan Hill, are most impressive. With the mind thus impressed, let any one examine beds of conglomerate41 many thousand feet in thickness, which, though probably formed at a quicker rate than many other deposits, yet, from being formed of worn and rounded pebbles, each of which bears the stamp of time, are good to show how slowly the mass has been accumulated. Let him remember Lyell's profound remark, that the thickness and extent of sedimentary formations are the result and measure of the degradation which the earth's crust has elsewhere suffered. And what an amount of degradation is implied by the sedimentary deposits of many countries! Professor Ramsay has given me the maximum thickness, in most cases from actual measurement, in a few cases from estimate, of each formation in different parts of Great Britain; and this is the result:--

Feet Palaeozoic strata (not including igneous42 beds)..57,154. Secondary strata................................13,190. Tertiary strata..................................2,240.

--making altogether 72,584 feet; that is, very nearly thirteen and three-quarters British miles. Some of these formations, which are represented in England by thin beds, are thousands of feet in thickness on the Continent. Moreover, between each successive formation, we have, in the opinion of most geologists43, enormously long blank periods. So that the lofty pile of sedimentary rocks in Britain, gives but an inadequate idea of the time which has elapsed during their accumulation; yet what time this must have consumed! Good observers have estimated that sediment is deposited by the great Mississippi river at the rate of only 600 feet in a hundred thousand years. This estimate may be quite erroneous; yet, considering over what wide spaces very fine sediment is transported by the currents of the sea, the process of accumulation in any one area must be extremely slow.

But the amount of denudation which the strata have in many places suffered, independently of the rate of accumulation of the degraded matter, probably offers the best evidence of the lapse of time. I remember having been much struck with the evidence of denudation, when viewing volcanic44 islands, which have been worn by the waves and pared all round into perpendicular45 cliffs of one or two thousand feet in height; for the gentle slope of the lava-streams, due to their formerly liquid state, showed at a glance how far the hard, rocky beds had once extended into the open ocean. The same story is still more plainly told by faults,--those great cracks along which the strata have been upheaved on one side, or thrown down on the other, to the height or depth of thousands of feet; for since the crust cracked, the surface of the land has been so completely planed down by the action of the sea, that no trace of these vast dislocations is externally visible.

The Craven fault, for instance, extends for upwards46 of 30 miles, and along this line the vertical47 displacement48 of the strata has varied49 from 600 to 3000 feet. Professor Ramsay has published an account of a downthrow in Anglesea of 2300 feet; and he informs me that he fully50 believes there is one in Merionethshire of 12,000 feet; yet in these cases there is nothing on the surface to show such prodigious51 movements; the pile of rocks on the one or other side having been smoothly52 swept away. The consideration of these facts impresses my mind almost in the same manner as does the vain endeavour to grapple with the idea of eternity53.

I am tempted54 to give one other case, the well-known one of the denudation of the Weald. Though it must be admitted that the denudation of the Weald has been a mere trifle, in comparison with that which has removed masses of our palaeozoic strata, in parts ten thousand feet in thickness, as shown in Professor Ramsay's masterly memoir55 on this subject. Yet it is an admirable lesson to stand on the North Downs and to look at the distant South Downs; for, remembering that at no great distance to the west the northern and southern escarpments meet and close, one can safely picture to oneself the great dome56 of rocks which must have covered up the Weald within so limited a period as since the latter part of the Chalk formation. The distance from the northern to the southern Downs is about 22 miles, and the thickness of the several formations is on an average about 1100 feet, as I am informed by Professor Ramsay. But if, as some geologists suppose, a range of older rocks underlies57 the Weald, on the flanks of which the overlying sedimentary deposits might have accumulated in thinner masses than elsewhere, the above estimate would be erroneous; but this source of doubt probably would not greatly affect the estimate as applied58 to the western extremity59 of the district. If, then, we knew the rate at which the sea commonly wears away a line of cliff of any given height, we could measure the time requisite60 to have denuded61 the Weald. This, of course, cannot be done; but we may, in order to form some crude notion on the subject, assume that the sea would eat into cliffs 500 feet in height at the rate of one inch in a century. This will at first appear much too small an allowance; but it is the same as if we were to assume a cliff one yard in height to be eaten back along a whole line of coast at the rate of one yard in nearly every twenty-two years. I doubt whether any rock, even as soft as chalk, would yield at this rate excepting on the most exposed coasts; though no doubt the degradation of a lofty cliff would be more rapid from the breakage of the fallen fragments. On the other hand, I do not believe that any line of coast, ten or twenty miles in length, ever suffers degradation at the same time along its whole indented62 length; and we must remember that almost all strata contain harder layers or nodules, which from long resisting attrition form a breakwater at the base. Hence, under ordinary circumstances, I conclude that for a cliff 500 feet in height, a denudation of one inch per century for the whole length would be an ample allowance. At this rate, on the above data, the denudation of the Weald must have required 306,662,400 years; or say three hundred million years.

The action of fresh water on the gently inclined Wealden district, when upraised, could hardly have been great, but it would somewhat reduce the above estimate. On the other hand, during oscillations of level, which we know this area has undergone, the surface may have existed for millions of years as land, and thus have escaped the action of the sea: when deeply submerged for perhaps equally long periods, it would, likewise, have escaped the action of the coast-waves. So that in all probability a far longer period than 300 million years has elapsed since the latter part of the Secondary period.

I have made these few remarks because it is highly important for us to gain some notion, however imperfect, of the lapse of years. During each of these years, over the whole world, the land and the water has been peopled by hosts of living forms. What an infinite number of generations, which the mind cannot grasp, must have succeeded each other in the long roll of years! Now turn to our richest geological museums, and what a paltry64 display we behold65!

ON THE POORNESS OF OUR PALAEONTOLOGICAL COLLECTIONS.

That our palaeontological collections are very imperfect, is admitted by every one. The remark of that admirable palaeontologist, the late Edward Forbes, should not be forgotten, namely, that numbers of our fossil species are known and named from single and often broken specimens67, or from a few specimens collected on some one spot. Only a small portion of the surface of the earth has been geologically explored, and no part with sufficient care, as the important discoveries made every year in Europe prove. No organism wholly soft can be preserved. Shells and bones will decay and disappear when left on the bottom of the sea, where sediment is not accumulating. I believe we are continually taking a most erroneous view, when we tacitly admit to ourselves that sediment is being deposited over nearly the whole bed of the sea, at a rate sufficiently68 quick to embed69 and preserve fossil remains. Throughout an enormously large proportion of the ocean, the bright blue tint70 of the water bespeaks71 its purity. The many cases on record of a formation conformably covered, after an enormous interval72 of time, by another and later formation, without the underlying73 bed having suffered in the interval any wear and tear, seem explicable only on the view of the bottom of the sea not rarely lying for ages in an unaltered condition. The remains which do become embedded74, if in sand or gravel75, will when the beds are upraised generally be dissolved by the percolation76 of rain-water. I suspect that but few of the very many animals which live on the beach between high and low watermark are preserved. For instance, the several species of the Chthamalinae (a sub-family of sessile cirripedes) coat the rocks all over the world in infinite numbers: they are all strictly77 littoral78, with the exception of a single Mediterranean79 species, which inhabits deep water and has been found fossil in Sicily, whereas not one other species has hitherto been found in any tertiary formation: yet it is now known that the genus Chthamalus existed during the chalk period. The molluscan genus Chiton offers a partially80 analogous81 case.

With respect to the terrestrial productions which lived during the Secondary and Palaeozoic periods, it is superfluous82 to state that our evidence from fossil remains is fragmentary in an extreme degree. For instance, not a land shell is known belonging to either of these vast periods, with one exception discovered by Sir C. Lyell in the carboniferous strata of North America. In regard to mammiferous remains, a single glance at the historical table published in the Supplement to Lyell's Manual, will bring home the truth, how accidental and rare is their preservation83, far better than pages of detail. Nor is their rarity surprising, when we remember how large a proportion of the bones of tertiary mammals have been discovered either in caves or in lacustrine deposits; and that not a cave or true lacustrine bed is known belonging to the age of our secondary or palaeozoic formations.

But the imperfection in the geological record mainly results from another and more important cause than any of the foregoing; namely, from the several formations being separated from each other by wide intervals84 of time. When we see the formations tabulated85 in written works, or when we follow them in nature, it is difficult to avoid believing that they are closely consecutive86. But we know, for instance, from Sir R. Murchison's great work on Russia, what wide gaps there are in that country between the superimposed formations; so it is in North America, and in many other parts of the world. The most skilful87 geologist, if his attention had been exclusively confined to these large territories, would never have suspected that during the periods which were blank and barren in his own country, great piles of sediment, charged with new and peculiar88 forms of life, had elsewhere been accumulated. And if in each separate territory, hardly any idea can be formed of the length of time which has elapsed between the consecutive formations, we may infer that this could nowhere be ascertained89. The frequent and great changes in the mineralogical composition of consecutive formations, generally implying great changes in the geography of the surrounding lands, whence the sediment has been derived90, accords with the belief of vast intervals of time having elapsed between each formation.

But we can, I think, see why the geological formations of each region are almost invariably intermittent91; that is, have not followed each other in close sequence. Scarcely any fact struck me more when examining many hundred miles of the South American coasts, which have been upraised several hundred feet within the recent period, than the absence of any recent deposits sufficiently extensive to last for even a short geological period. Along the whole west coast, which is inhabited by a peculiar marine fauna92, tertiary beds are so scantily93 developed, that no record of several successive and peculiar marine faunas94 will probably be preserved to a distant age. A little reflection will explain why along the rising coast of the western side of South America, no extensive formations with recent or tertiary remains can anywhere be found, though the supply of sediment must for ages have been great, from the enormous degradation of the coast-rocks and from muddy streams entering the sea. The explanation, no doubt, is, that the littoral and sub-littoral deposits are continually worn away, as soon as they are brought up by the slow and gradual rising of the land within the grinding action of the coast-waves.

We may, I think, safely conclude that sediment must be accumulated in extremely thick, solid, or extensive masses, in order to withstand the incessant95 action of the waves, when first upraised and during subsequent oscillations of level. Such thick and extensive accumulations of sediment may be formed in two ways; either, in profound depths of the sea, in which case, judging from the researches of E. Forbes, we may conclude that the bottom will be inhabited by extremely few animals, and the mass when upraised will give a most imperfect record of the forms of life which then existed; or, sediment may be accumulated to any thickness and extent over a shallow bottom, if it continue slowly to subside96. In this latter case, as long as the rate of subsidence and supply of sediment nearly balance each other, the sea will remain shallow and favourable for life, and thus a fossiliferous formation thick enough, when upraised, to resist any amount of degradation, may be formed.

I am convinced that all our ancient formations, which are rich in fossils, have thus been formed during subsidence. Since publishing my views on this subject in 1845, I have watched the progress of Geology, and have been surprised to note how author after author, in treating of this or that great formation, has come to the conclusion that it was accumulated during subsidence. I may add, that the only ancient tertiary formation on the west coast of South America, which has been bulky enough to resist such degradation as it has as yet suffered, but which will hardly last to a distant geological age, was certainly deposited during a downward oscillation of level, and thus gained considerable thickness.

All geological facts tell us plainly that each area has undergone numerous slow oscillations of level, and apparently these oscillations have affected97 wide spaces. Consequently formations rich in fossils and sufficiently thick and extensive to resist subsequent degradation, may have been formed over wide spaces during periods of subsidence, but only where the supply of sediment was sufficient to keep the sea shallow and to embed and preserve the remains before they had time to decay. On the other hand, as long as the bed of the sea remained stationary98, THICK deposits could not have been accumulated in the shallow parts, which are the most favourable to life. Still less could this have happened during the alternate periods of elevation99; or, to speak more accurately100, the beds which were then accumulated will have been destroyed by being upraised and brought within the limits of the coast-action.

Thus the geological record will almost necessarily be rendered intermittent. I feel much confidence in the truth of these views, for they are in strict accordance with the general principles inculcated by Sir C. Lyell; and E. Forbes independently arrived at a similar conclusion.

One remark is here worth a passing notice. During periods of elevation the area of the land and of the adjoining shoal parts of the sea will be increased, and new stations will often be formed;--all circumstances most favourable, as previously101 explained, for the formation of new varieties and species; but during such periods there will generally be a blank in the geological record. On the other hand, during subsidence, the inhabited area and number of inhabitants will decrease (excepting the productions on the shores of a continent when first broken up into an archipelago), and consequently during subsidence, though there will be much extinction102, fewer new varieties or species will be formed; and it is during these very periods of subsidence, that our great deposits rich in fossils have been accumulated. Nature may almost be said to have guarded against the frequent discovery of her transitional or linking forms.

From the foregoing considerations it cannot be doubted that the geological record, viewed as a whole, is extremely imperfect; but if we confine our attention to any one formation, it becomes more difficult to understand, why we do not therein find closely graduated varieties between the allied species which lived at its commencement and at its close. Some cases are on record of the same species presenting distinct varieties in the upper and lower parts of the same formation, but, as they are rare, they may be here passed over. Although each formation has indisputably required a vast number of years for its deposition, I can see several reasons why each should not include a graduated series of links between the species which then lived; but I can by no means pretend to assign due proportional weight to the following considerations.

Although each formation may mark a very long lapse of years, each perhaps is short compared with the period requisite to change one species into another. I am aware that two palaeontologists, whose opinions are worthy103 of much deference104, namely Bronn and Woodward, have concluded that the average duration of each formation is twice or thrice as long as the average duration of specific forms. But insuperable difficulties, as it seems to me, prevent us coming to any just conclusion on this head. When we see a species first appearing in the middle of any formation, it would be rash in the extreme to infer that it had not elsewhere previously existed. So again when we find a species disappearing before the uppermost layers have been deposited, it would be equally rash to suppose that it then became wholly extinct. We forget how small the area of Europe is compared with the rest of the world; nor have the several stages of the same formation throughout Europe been correlated with perfect accuracy.

With marine animals of all kinds, we may safely infer a large amount of migration105 during climatal and other changes; and when we see a species first appearing in any formation, the probability is that it only then first immigrated106 into that area. It is well known, for instance, that several species appeared somewhat earlier in the palaeozoic beds of North America than in those of Europe; time having apparently been required for their migration from the American to the European seas. In examining the latest deposits of various quarters of the world, it has everywhere been noted107, that some few still existing species are common in the deposit, but have become extinct in the immediately surrounding sea; or, conversely, that some are now abundant in the neighbouring sea, but are rare or absent in this particular deposit. It is an excellent lesson to reflect on the ascertained amount of migration of the inhabitants of Europe during the Glacial period, which forms only a part of one whole geological period; and likewise to reflect on the great changes of level, on the inordinately108 great change of climate, on the prodigious lapse of time, all included within this same glacial period. Yet it may be doubted whether in any quarter of the world, sedimentary deposits, INCLUDING FOSSIL REMAINS, have gone on accumulating within the same area during the whole of this period. It is not, for instance, probable that sediment was deposited during the whole of the glacial period near the mouth of the Mississippi, within that limit of depth at which marine animals can flourish; for we know what vast geographical109 changes occurred in other parts of America during this space of time. When such beds as were deposited in shallow water near the mouth of the Mississippi during some part of the glacial period shall have been upraised, organic remains will probably first appear and disappear at different levels, owing to the migration of species and to geographical changes. And in the distant future, a geologist examining these beds, might be tempted to conclude that the average duration of life of the embedded fossils had been less than that of the glacial period, instead of having been really far greater, that is extending from before the glacial epoch110 to the present day.

In order to get a perfect gradation between two forms in the upper and lower parts of the same formation, the deposit must have gone on accumulating for a very long period, in order to have given sufficient time for the slow process of variation; hence the deposit will generally have to be a very thick one; and the species undergoing modification will have had to live on the same area throughout this whole time. But we have seen that a thick fossiliferous formation can only be accumulated during a period of subsidence; and to keep the depth approximately the same, which is necessary in order to enable the same species to live on the same space, the supply of sediment must nearly have counterbalanced the amount of subsidence. But this same movement of subsidence will often tend to sink the area whence the sediment is derived, and thus diminish the supply whilst the downward movement continues. In fact, this nearly exact balancing between the supply of sediment and the amount of subsidence is probably a rare contingency111; for it has been observed by more than one palaeontologist, that very thick deposits are usually barren of organic remains, except near their upper or lower limits.

It would seem that each separate formation, like the whole pile of formations in any country, has generally been intermittent in its accumulation. When we see, as is so often the case, a formation composed of beds of different mineralogical composition, we may reasonably suspect that the process of deposition has been much interrupted, as a change in the currents of the sea and a supply of sediment of a different nature will generally have been due to geographical changes requiring much time. Nor will the closest inspection112 of a formation give any idea of the time which its deposition has consumed. Many instances could be given of beds only a few feet in thickness, representing formations, elsewhere thousands of feet in thickness, and which must have required an enormous period for their accumulation; yet no one ignorant of this fact would have suspected the vast lapse of time represented by the thinner formation. Many cases could be given of the lower beds of a formation having been upraised, denuded, submerged, and then re-covered by the upper beds of the same formation,--facts, showing what wide, yet easily overlooked, intervals have occurred in its accumulation. In other cases we have the plainest evidence in great fossilised trees, still standing113 upright as they grew, of many long intervals of time and changes of level during the process of deposition, which would never even have been suspected, had not the trees chanced to have been preserved: thus, Messrs. Lyell and Dawson found carboniferous beds 1400 feet thick in Nova Scotia, with ancient root-bearing strata, one above the other, at no less than sixty-eight different levels. Hence, when the same species occur at the bottom, middle, and top of a formation, the probability is that they have not lived on the same spot during the whole period of deposition, but have disappeared and reappeared, perhaps many times, during the same geological period. So that if such species were to undergo a considerable amount of modification during any one geological period, a section would not probably include all the fine intermediate gradations which must on my theory have existed between them, but abrupt114, though perhaps very slight, changes of form.

It is all-important to remember that naturalists115 have no golden rule by which to distinguish species and varieties; they grant some little variability to each species, but when they meet with a somewhat greater amount of difference between any two forms, they rank both as species, unless they are enabled to connect them together by close intermediate gradations. And this from the reasons just assigned we can seldom hope to effect in any one geological section. Supposing B and C to be two species, and a third, A, to be found in an underlying bed; even if A were strictly intermediate between B and C, it would simply be ranked as a third and distinct species, unless at the same time it could be most closely connected with either one or both forms by intermediate varieties. Nor should it be forgotten, as before explained, that A might be the actual progenitor of B and C, and yet might not at all necessarily be strictly intermediate between them in all points of structure. So that we might obtain the parent-species and its several modified descendants from the lower and upper beds of a formation, and unless we obtained numerous transitional gradations, we should not recognise their relationship, and should consequently be compelled to rank them all as distinct species.

It is notorious on what excessively slight differences many palaeontologists have founded their species; and they do this the more readily if the specimens come from different sub-stages of the same formation. Some experienced conchologists are now sinking many of the very fine species of D'Orbigny and others into the rank of varieties; and on this view we do find the kind of evidence of change which on my theory we ought to find. Moreover, if we look to rather wider intervals, namely, to distinct but consecutive stages of the same great formation, we find that the embedded fossils, though almost universally ranked as specifically different, yet are far more closely allied to each other than are the species found in more widely separated formations; but to this subject I shall have to return in the following chapter.

One other consideration is worth notice: with animals and plants that can propagate rapidly and are not highly locomotive, there is reason to suspect, as we have formerly seen, that their varieties are generally at first local; and that such local varieties do not spread widely and supplant their parent-forms until they have been modified and perfected in some considerable degree. According to this view, the chance of discovering in a formation in any one country all the early stages of transition between any two forms, is small, for the successive changes are supposed to have been local or confined to some one spot. Most marine animals have a wide range; and we have seen that with plants it is those which have the widest range, that oftenest present varieties; so that with shells and other marine animals, it is probably those which have had the widest range, far exceeding the limits of the known geological formations of Europe, which have oftenest given rise, first to local varieties and ultimately to new species; and this again would greatly lessen117 the chance of our being able to trace the stages of transition in any one geological formation.

It should not be forgotten, that at the present day, with perfect specimens for examination, two forms can seldom be connected by intermediate varieties and thus proved to be the same species, until many specimens have been collected from many places; and in the case of fossil species this could rarely be effected by palaeontologists. We shall, perhaps, best perceive the improbability of our being enabled to connect species by numerous, fine, intermediate, fossil links, by asking ourselves whether, for instance, geologists at some future period will be able to prove, that our different breeds of cattle, sheep, horses, and dogs have descended from a single stock or from several aboriginal118 stocks; or, again, whether certain sea-shells inhabiting the shores of North America, which are ranked by some conchologists as distinct species from their European representatives, and by other conchologists as only varieties, are really varieties or are, as it is called, specifically distinct. This could be effected only by the future geologist discovering in a fossil state numerous intermediate gradations; and such success seems to me improbable in the highest degree.

Geological research, though it has added numerous species to existing and extinct genera, and has made the intervals between some few groups less wide than they otherwise would have been, yet has done scarcely anything in breaking down the distinction between species, by connecting them together by numerous, fine, intermediate varieties; and this not having been effected, is probably the gravest and most obvious of all the many objections which may be urged against my views. Hence it will be worth while to sum up the foregoing remarks, under an imaginary illustration. The Malay Archipelago is of about the size of Europe from the North Cape63 to the Mediterranean, and from Britain to Russia; and therefore equals all the geological formations which have been examined with any accuracy, excepting those of the United States of America. I fully agree with Mr. Godwin-Austen, that the present condition of the Malay Archipelago, with its numerous large islands separated by wide and shallow seas, probably represents the former state of Europe, when most of our formations were accumulating. The Malay Archipelago is one of the richest regions of the whole world in organic beings; yet if all the species were to be collected which have ever lived there, how imperfectly would they represent the natural history of the world!

But we have every reason to believe that the terrestrial productions of the archipelago would be preserved in an excessively imperfect manner in the formations which we suppose to be there accumulating. I suspect that not many of the strictly littoral animals, or of those which lived on naked submarine rocks, would be embedded; and those embedded in gravel or sand, would not endure to a distant epoch. Wherever sediment did not accumulate on the bed of the sea, or where it did not accumulate at a sufficient rate to protect organic bodies from decay, no remains could be preserved.

In our archipelago, I believe that fossiliferous formations could be formed of sufficient thickness to last to an age, as distant in futurity as the secondary formations lie in the past, only during periods of subsidence. These periods of subsidence would be separated from each other by enormous intervals, during which the area would be either stationary or rising; whilst rising, each fossiliferous formation would be destroyed, almost as soon as accumulated, by the incessant coast-action, as we now see on the shores of South America. During the periods of subsidence there would probably be much extinction of life; during the periods of elevation, there would be much variation, but the geological record would then be least perfect.

It may be doubted whether the duration of any one great period of subsidence over the whole or part of the archipelago, together with a contemporaneous accumulation of sediment, would EXCEED the average duration of the same specific forms; and these contingencies120 are indispensable for the preservation of all the transitional gradations between any two or more species. If such gradations were not fully preserved, transitional varieties would merely appear as so many distinct species. It is, also, probable that each great period of subsidence would be interrupted by oscillations of level, and that slight climatal changes would intervene during such lengthy121 periods; and in these cases the inhabitants of the archipelago would have to migrate, and no closely consecutive record of their modifications122 could be preserved in any one formation.

Very many of the marine inhabitants of the archipelago now range thousands of miles beyond its confines; and analogy leads me to believe that it would be chiefly these far-ranging species which would oftenest produce new varieties; and the varieties would at first generally be local or confined to one place, but if possessed of any decided123 advantage, or when further modified and improved, they would slowly spread and supplant their parent-forms. When such varieties returned to their ancient homes, as they would differ from their former state, in a nearly uniform, though perhaps extremely slight degree, they would, according to the principles followed by many palaeontologists, be ranked as new and distinct species.

If then, there be some degree of truth in these remarks, we have no right to expect to find in our geological formations, an infinite number of those fine transitional forms, which on my theory assuredly have connected all the past and present species of the same group into one long and branching chain of life. We ought only to look for a few links, some more closely, some more distantly related to each other; and these links, let them be ever so close, if found in different stages of the same formation, would, by most palaeontologists, be ranked as distinct species. But I do not pretend that I should ever have suspected how poor a record of the mutations of life, the best preserved geological section presented, had not the difficulty of our not discovering innumerable transitional links between the species which appeared at the commencement and close of each formation, pressed so hardly on my theory.

ON THE SUDDEN APPEARANCE OF WHOLE GROUPS OF ALLIED SPECIES.

The abrupt manner in which whole groups of species suddenly appear in certain formations, has been urged by several palaeontologists, for instance, by Agassiz, Pictet, and by none more forcibly than by Professor Sedgwick, as a fatal objection to the belief in the transmutation of species. If numerous species, belonging to the same genera or families, have really started into life all at once, the fact would be fatal to the theory of descent with slow modification through natural selection. For the development of a group of forms, all of which have descended from some one progenitor, must have been an extremely slow process; and the progenitors124 must have lived long ages before their modified descendants. But we continually over-rate the perfection of the geological record, and falsely infer, because certain genera or families have not been found beneath a certain stage, that they did not exist before that stage. We continually forget how large the world is, compared with the area over which our geological formations have been carefully examined; we forget that groups of species may elsewhere have long existed and have slowly multiplied before they invaded the ancient archipelagoes of Europe and of the United States. We do not make due allowance for the enormous intervals of time, which have probably elapsed between our consecutive formations,--longer perhaps in some cases than the time required for the accumulation of each formation. These intervals will have given time for the multiplication125 of species from some one or some few parent-forms; and in the succeeding formation such species will appear as if suddenly created.

I may here recall a remark formerly made, namely that it might require a long succession of ages to adapt an organism to some new and peculiar line of life, for instance to fly through the air; but that when this had been effected, and a few species had thus acquired a great advantage over other organisms, a comparatively short time would be necessary to produce many divergent forms, which would be able to spread rapidly and widely throughout the world.

I will now give a few examples to illustrate126 these remarks; and to show how liable we are to error in supposing that whole groups of species have suddenly been produced. I may recall the well-known fact that in geological treatises, published not many years ago, the great class of mammals was always spoken of as having abruptly127 come in at the commencement of the tertiary series. And now one of the richest known accumulations of fossil mammals belongs to the middle of the secondary series; and one true mammal has been discovered in the new red sandstone at nearly the commencement of this great series. Cuvier used to urge that no monkey occurred in any tertiary stratum; but now extinct species have been discovered in India, South America, and in Europe even as far back as the eocene stage. The most striking case, however, is that of the Whale family; as these animals have huge bones, are marine, and range over the world, the fact of not a single bone of a whale having been discovered in any secondary formation, seemed fully to justify128 the belief that this great and distinct order had been suddenly produced in the interval between the latest secondary and earliest tertiary formation. But now we may read in the Supplement to Lyell's 'Manual,' published in 1858, clear evidence of the existence of whales in the upper greensand, some time before the close of the secondary period.

I may give another instance, which from having passed under my own eyes has much struck me. In a memoir on Fossil Sessile Cirripedes, I have stated that, from the number of existing and extinct tertiary species; from the extraordinary abundance of the individuals of many species all over the world, from the Arctic regions to the equator, inhabiting various zones of depths from the upper tidal limits to 50 fathoms129; from the perfect manner in which specimens are preserved in the oldest tertiary beds; from the ease with which even a fragment of a valve can be recognised; from all these circumstances, I inferred that had sessile cirripedes existed during the secondary periods, they would certainly have been preserved and discovered; and as not one species had been discovered in beds of this age, I concluded that this great group had been suddenly developed at the commencement of the tertiary series. This was a sore trouble to me, adding as I thought one more instance of the abrupt appearance of a great group of species. But my work had hardly been published, when a skilful palaeontologist, M. Bosquet, sent me a drawing of a perfect specimen66 of an unmistakeable sessile cirripede, which he had himself extracted from the chalk of Belgium. And, as if to make the case as striking as possible, this sessile cirripede was a Chthamalus, a very common, large, and ubiquitous genus, of which not one specimen has as yet been found even in any tertiary stratum. Hence we now positively130 know that sessile cirripedes existed during the secondary period; and these cirripedes might have been the progenitors of our many tertiary and existing species.

The case most frequently insisted on by palaeontologists of the apparently sudden appearance of a whole group of species, is that of the teleostean fishes, low down in the Chalk period. This group includes the large majority of existing species. Lately, Professor Pictet has carried their existence one sub-stage further back; and some palaeontologists believe that certain much older fishes, of which the affinities131 are as yet imperfectly known, are really teleostean. Assuming, however, that the whole of them did appear, as Agassiz believes, at the commencement of the chalk formation, the fact would certainly be highly remarkable132; but I cannot see that it would be an insuperable difficulty on my theory, unless it could likewise be shown that the species of this group appeared suddenly and simultaneously133 throughout the world at this same period. It is almost superfluous to remark that hardly any fossil-fish are known from south of the equator; and by running through Pictet's Palaeontology it will be seen that very few species are known from several formations in Europe. Some few families of fish now have a confined range; the teleostean fish might formerly have had a similarly confined range, and after having been largely developed in some one sea, might have spread widely. Nor have we any right to suppose that the seas of the world have always been so freely open from south to north as they are at present. Even at this day, if the Malay Archipelago were converted into land, the tropical parts of the Indian Ocean would form a large and perfectly119 enclosed basin, in which any great group of marine animals might be multiplied; and here they would remain confined, until some of the species became adapted to a cooler climate, and were enabled to double the southern capes134 of Africa or Australia, and thus reach other and distant seas.

From these and similar considerations, but chiefly from our ignorance of the geology of other countries beyond the confines of Europe and the United States; and from the revolution in our palaeontological ideas on many points, which the discoveries of even the last dozen years have effected, it seems to me to be about as rash in us to dogmatize on the succession of organic beings throughout the world, as it would be for a naturalist116 to land for five minutes on some one barren point in Australia, and then to discuss the number and range of its productions.

ON THE SUDDEN APPEARANCE OF GROUPS OF ALLIED SPECIES IN THE LOWEST KNOWN FOSSILIFEROUS STRATA.

There is another and allied difficulty, which is much graver. I allude135 to the manner in which numbers of species of the same group, suddenly appear in the lowest known fossiliferous rocks. Most of the arguments which have convinced me that all the existing species of the same group have descended from one progenitor, apply with nearly equal force to the earliest known species. For instance, I cannot doubt that all the Silurian trilobites have descended from some one crustacean136, which must have lived long before the Silurian age, and which probably differed greatly from any known animal. Some of the most ancient Silurian animals, as the Nautilus, Lingula, etc., do not differ much from living species; and it cannot on my theory be supposed, that these old species were the progenitors of all the species of the orders to which they belong, for they do not present characters in any degree intermediate between them. If, moreover, they had been the progenitors of these orders, they would almost certainly have been long ago supplanted137 and exterminated by their numerous and improved descendants.

Consequently, if my theory be true, it is indisputable that before the lowest Silurian stratum was deposited, long periods elapsed, as long as, or probably far longer than, the whole interval from the Silurian age to the present day; and that during these vast, yet quite unknown, periods of time, the world swarmed138 with living creatures.

To the question why we do not find records of these vast primordial139 periods, I can give no satisfactory answer. Several of the most eminent140 geologists, with Sir R. Murchison at their head, are convinced that we see in the organic remains of the lowest Silurian stratum the dawn of life on this planet. Other highly competent judges, as Lyell and the late E. Forbes, dispute this conclusion. We should not forget that only a small portion of the world is known with accuracy. M. Barrande has lately added another and lower stage to the Silurian system, abounding141 with new and peculiar species. Traces of life have been detected in the Longmynd beds beneath Barrande's so-called primordial zone. The presence of phosphatic nodules and bituminous matter in some of the lowest azoic rocks, probably indicates the former existence of life at these periods. But the difficulty of understanding the absence of vast piles of fossiliferous strata, which on my theory no doubt were somewhere accumulated before the Silurian epoch, is very great. If these most ancient beds had been wholly worn away by denudation, or obliterated142 by metamorphic action, we ought to find only small remnants of the formations next succeeding them in age, and these ought to be very generally in a metamorphosed condition. But the descriptions which we now possess of the Silurian deposits over immense territories in Russia and in North America, do not support the view, that the older a formation is, the more it has suffered the extremity of denudation and metamorphism.

The case at present must remain inexplicable143; and may be truly urged as a valid144 argument against the views here entertained. To show that it may hereafter receive some explanation, I will give the following hypothesis. From the nature of the organic remains, which do not appear to have inhabited profound depths, in the several formations of Europe and of the United States; and from the amount of sediment, miles in thickness, of which the formations are composed, we may infer that from first to last large islands or tracts145 of land, whence the sediment was derived, occurred in the neighbourhood of the existing continents of Europe and North America. But we do not know what was the state of things in the intervals between the successive formations; whether Europe and the United States during these intervals existed as dry land, or as a submarine surface near land, on which sediment was not deposited, or again as the bed of an open and unfathomable sea.

Looking to the existing oceans, which are thrice as extensive as the land, we see them studded with many islands; but not one oceanic island is as yet known to afford even a remnant of any palaeozoic or secondary formation. Hence we may perhaps infer, that during the palaeozoic and secondary periods, neither continents nor continental146 islands existed where our oceans now extend; for had they existed there, palaeozoic and secondary formations would in all probability have been accumulated from sediment derived from their wear and tear; and would have been at least partially upheaved by the oscillations of level, which we may fairly conclude must have intervened during these enormously long periods. If then we may infer anything from these facts, we may infer that where our oceans now extend, oceans have extended from the remotest period of which we have any record; and on the other hand, that where continents now exist, large tracts of land have existed, subjected no doubt to great oscillations of level, since the earliest silurian period. The coloured map appended to my volume on Coral Reefs, led me to conclude that the great oceans are still mainly areas of subsidence, the great archipelagoes still areas of oscillations of level, and the continents areas of elevation. But have we any right to assume that things have thus remained from eternity? Our continents seem to have been formed by a preponderance, during many oscillations of level, of the force of elevation; but may not the areas of preponderant movement have changed in the lapse of ages? At a period immeasurably antecedent to the silurian epoch, continents may have existed where oceans are now spread out; and clear and open oceans may have existed where our continents now stand. Nor should we be justified147 in assuming that if, for instance, the bed of the Pacific Ocean were now converted into a continent, we should there find formations older than the silurian strata, supposing such to have been formerly deposited; for it might well happen that strata which had subsided148 some miles nearer to the centre of the earth, and which had been pressed on by an enormous weight of superincumbent water, might have undergone far more metamorphic action than strata which have always remained nearer to the surface. The immense areas in some parts of the world, for instance in South America, of bare metamorphic rocks, which must have been heated under great pressure, have always seemed to me to require some special explanation; and we may perhaps believe that we see in these large areas, the many formations long anterior149 to the silurian epoch in a completely metamorphosed condition.

The several difficulties here discussed, namely our not finding in the successive formations infinitely numerous transitional links between the many species which now exist or have existed; the sudden manner in which whole groups of species appear in our European formations; the almost entire absence, as at present known, of fossiliferous formations beneath the Silurian strata, are all undoubtedly150 of the gravest nature. We see this in the plainest manner by the fact that all the most eminent palaeontologists, namely Cuvier, Owen, Agassiz, Barrande, Falconer, E. Forbes, etc., and all our greatest geologists, as Lyell, Murchison, Sedgwick, etc., have unanimously, often vehemently151, maintained the immutability152 of species. But I have reason to believe that one great authority, Sir Charles Lyell, from further reflexion entertains grave doubts on this subject. I feel how rash it is to differ from these great authorities, to whom, with others, we owe all our knowledge. Those who think the natural geological record in any degree perfect, and who do not attach much weight to the facts and arguments of other kinds given in this volume, will undoubtedly at once reject my theory. For my part, following out Lyell's metaphor153, I look at the natural geological record, as a history of the world imperfectly kept, and written in a changing dialect; of this history we possess the last volume alone, relating only to two or three countries. Of this volume, only here and there a short chapter has been preserved; and of each page, only here and there a few lines. Each word of the slowly-changing language, in which the history is supposed to be written, being more or less different in the interrupted succession of chapters, may represent the apparently abruptly changed forms of life, entombed in our consecutive, but widely separated formations. On this view, the difficulties above discussed are greatly diminished, or even disappear.


点击收听单词发音收听单词发音  

1 lapse t2lxL     
n.过失,流逝,失效,抛弃信仰,间隔;vi.堕落,停止,失效,流逝;vt.使失效
参考例句:
  • The incident was being seen as a serious security lapse.这一事故被看作是一次严重的安全疏忽。
  • I had a lapse of memory.我记错了。
2 deposition MwOx4     
n.免职,罢官;作证;沉淀;沉淀物
参考例句:
  • It was this issue which led to the deposition of the king.正是这件事导致了国王被废黜。
  • This leads to calcium deposition in the blood-vessels.这导致钙在血管中沉积。
3 denudation 12e5aa7b702054ca561b46f05cacb0be     
n.剥下;裸露;滥伐;剥蚀
参考例句:
  • Sedimentation and denudation play a role in exceptional cases. 沉积和剥蚀作用的影响只在特殊情况下起作用。 来自辞典例句
  • The cooling rate and denudation rate decreased overall from north to south. 总体上自北而南,剥蚀速率和冷却速率均逐渐变小。 来自互联网
4 intermittence ad422bacb0aa1b4d33791426dc4a4f14     
n.间断;间歇
参考例句:
  • Next network of a week attacks intermittence, pattern 100. 接下来一星期的网络攻击时断时续,花样百出。 来自互联网
  • Intermittence dizziness, is eye faintness how to return a responsibility? 间歇性头晕,眼睛模糊是怎么回事? 来自互联网
5 strata GUVzv     
n.地层(复数);社会阶层
参考例句:
  • The older strata gradually disintegrate.较老的岩层渐渐风化。
  • They represent all social strata.他们代表各个社会阶层。
6 enumerated 837292cced46f73066764a6de97d6d20     
v.列举,枚举,数( enumerate的过去式和过去分词 )
参考例句:
  • A spokesperson enumerated the strikers' demands. 发言人列数罢工者的要求。 来自《简明英汉词典》
  • He enumerated the capitals of the 50 states. 他列举了50个州的首府。 来自《现代汉英综合大词典》
7 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
8 favourable favourable     
adj.赞成的,称赞的,有利的,良好的,顺利的
参考例句:
  • The company will lend you money on very favourable terms.这家公司将以非常优惠的条件借钱给你。
  • We found that most people are favourable to the idea.我们发现大多数人同意这个意见。
9 lesser UpxzJL     
adj.次要的,较小的;adv.较小地,较少地
参考例句:
  • Kept some of the lesser players out.不让那些次要的球员参加联赛。
  • She has also been affected,but to a lesser degree.她也受到波及,但程度较轻。
10 exterminated 26d6c11b25ea1007021683e86730eb44     
v.消灭,根绝( exterminate的过去式和过去分词 )
参考例句:
  • It was exterminated root and branch. 它被彻底剪除了。 来自《现代汉英综合大词典》
  • The insects can be exterminated by spraying DDT. 可以用喷撒滴滴涕的方法大量杀死这种昆虫。 来自《用法词典》
11 exterminate nmUxU     
v.扑灭,消灭,根绝
参考例句:
  • Some people exterminate garden insects by spraying poison on the plants.有些人在植物上喷撒毒剂以杀死花园内的昆虫。
  • Woodpeckers can exterminate insect pests hiding in trees.啄木鸟能消灭躲在树里的害虫。
12 modification tEZxm     
n.修改,改进,缓和,减轻
参考例句:
  • The law,in its present form,is unjust;it needs modification.现行的法律是不公正的,它需要修改。
  • The design requires considerable modification.这个设计需要作大的修改。
13 extermination 46ce066e1bd2424a1ebab0da135b8ac6     
n.消灭,根绝
参考例句:
  • All door and window is sealed for the extermination of mosquito. 为了消灭蚊子,所有的门窗都被封闭起来了。 来自辞典例句
  • In doing so they were saved from extermination. 这样一来却使它们免于绝灭。 来自辞典例句
14 formerly ni3x9     
adv.从前,以前
参考例句:
  • We now enjoy these comforts of which formerly we had only heard.我们现在享受到了过去只是听说过的那些舒适条件。
  • This boat was formerly used on the rivers of China.这船从前航行在中国内河里。
15 stratum TGHzK     
n.地层,社会阶层
参考例句:
  • The coal is a coal resource that reserves in old stratum.石煤是贮藏在古老地层中的一种煤炭资源。
  • How does Chinese society define the class and stratum?中国社会如何界定阶级与阶层?
16 progenitor 2iiyD     
n.祖先,先驱
参考例句:
  • He was also a progenitor of seven presidents of Nicaragua.他也是尼加拉瓜7任总统的祖先。
  • Schoenberg was a progenitor of modern music.勋伯格是一位现代音乐的先驱。
17 descended guQzoy     
a.为...后裔的,出身于...的
参考例句:
  • A mood of melancholy descended on us. 一种悲伤的情绪袭上我们的心头。
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
18 possessed xuyyQ     
adj.疯狂的;拥有的,占有的
参考例句:
  • He flew out of the room like a man possessed.他像着了魔似地猛然冲出房门。
  • He behaved like someone possessed.他行为举止像是魔怔了。
19 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
20 mere rC1xE     
adj.纯粹的;仅仅,只不过
参考例句:
  • That is a mere repetition of what you said before.那不过是重复了你以前讲的话。
  • It's a mere waste of time waiting any longer.再等下去纯粹是浪费时间。
21 allied iLtys     
adj.协约国的;同盟国的
参考例句:
  • Britain was allied with the United States many times in history.历史上英国曾多次与美国结盟。
  • Allied forces sustained heavy losses in the first few weeks of the campaign.同盟国在最初几周内遭受了巨大的损失。
22 organisation organisation     
n.组织,安排,团体,有机休
参考例句:
  • The method of his organisation work is worth commending.他的组织工作的方法值得称道。
  • His application for membership of the organisation was rejected.他想要加入该组织的申请遭到了拒绝。
23 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
24 supplant RFlyN     
vt.排挤;取代
参考例句:
  • Electric cars may one day supplant petrol-driven ones.也许有一天电动车会取代汽油驱动的车。
  • The law of momentum conservation could supplant Newton's third law.动量守恒定律可以取代牛顿第三定律。
25 backwards BP9ya     
adv.往回地,向原处,倒,相反,前后倒置地
参考例句:
  • He turned on the light and began to pace backwards and forwards.他打开电灯并开始走来走去。
  • All the girls fell over backwards to get the party ready.姑娘们迫不及待地为聚会做准备。
26 converging 23823b9401b4f5d440f61879a369ae50     
adj.收敛[缩]的,会聚的,趋同的v.(线条、运动的物体等)会于一点( converge的现在分词 );(趋于)相似或相同;人或车辆汇集;聚集
参考例句:
  • Plants had gradually evolved along diverging and converging pathways. 植物是沿着趋异和趋同两种途径逐渐演化的。 来自辞典例句
  • This very slowly converging series was known to Leibniz in 1674. 这个收敛很慢的级数是莱布尼茨在1674年得到的。 来自辞典例句
27 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
28 infinitely 0qhz2I     
adv.无限地,无穷地
参考例句:
  • There is an infinitely bright future ahead of us.我们有无限光明的前途。
  • The universe is infinitely large.宇宙是无限大的。
29 geologist ygIx7     
n.地质学家
参考例句:
  • The geologist found many uncovered fossils in the valley.在那山谷里,地质学家发现了许多裸露的化石。
  • He was a geologist,rated by his cronies as the best in the business.他是一位地质学家,被他的老朋友们看做是这门行当中最好的一位。
30 treatises 9ff9125c93810e8709abcafe0c3289ca     
n.专题著作,专题论文,专著( treatise的名词复数 )
参考例句:
  • Many treatises in different languages have been published on pigeons. 关于鸽类的著作,用各种文字写的很多。 来自辞典例句
  • Many other treatises incorporated the new rigor. 许多其它的专题论文体现了新的严密性。 来自辞典例句
31 inadequate 2kzyk     
adj.(for,to)不充足的,不适当的
参考例句:
  • The supply is inadequate to meet the demand.供不应求。
  • She was inadequate to the demands that were made on her.她还无力满足对她提出的各项要求。
32 sediment IsByK     
n.沉淀,沉渣,沉积(物)
参考例句:
  • The sediment settled and the water was clear.杂质沉淀后,水变清了。
  • Sediment begins to choke the channel's opening.沉积物开始淤塞河道口。
33 degradation QxKxL     
n.降级;低落;退化;陵削;降解;衰变
参考例句:
  • There are serious problems of land degradation in some arid zones.在一些干旱地带存在严重的土地退化问题。
  • Gambling is always coupled with degradation.赌博总是与堕落相联系。
34 pebbles e4aa8eab2296e27a327354cbb0b2c5d2     
[复数]鹅卵石; 沙砾; 卵石,小圆石( pebble的名词复数 )
参考例句:
  • The pebbles of the drive crunched under his feet. 汽车道上的小石子在他脚底下喀嚓作响。
  • Line the pots with pebbles to ensure good drainage. 在罐子里铺一层鹅卵石,以确保排水良好。
35 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
36 boulders 317f40e6f6d3dc0457562ca415269465     
n.卵石( boulder的名词复数 );巨砾;(受水或天气侵蚀而成的)巨石;漂砾
参考例句:
  • Seals basked on boulders in a flat calm. 海面风平浪静,海豹在巨石上晒太阳。 来自《简明英汉词典》
  • The river takes a headlong plunge into a maelstrom of rocks and boulders. 河水急流而下,入一个漂砾的漩涡中。 来自《简明英汉词典》
37 marine 77Izo     
adj.海的;海生的;航海的;海事的;n.水兵
参考例句:
  • Marine creatures are those which live in the sea. 海洋生物是生存在海里的生物。
  • When the war broke out,he volunteered for the Marine Corps.战争爆发时,他自愿参加了海军陆战队。
38 abraded dfa82b3edd28b530f7d28b3a78bb6140     
adj.[医]刮擦的v.刮擦( abrade的过去式和过去分词 );(在精神方面)折磨(人);消磨(意志、精神等);使精疲力尽
参考例句:
  • Much of the skin on her arm was abraded. 她胳膊上的大片皮肤被擦破了。 来自《简明英汉词典》
  • Their gossips abraded her into restlessness. 他们的流言蜚语使她心烦意乱。 来自《简明英汉词典》
39 promontory dRPxo     
n.海角;岬
参考例句:
  • Genius is a promontory jutting out of the infinite.天才是茫茫大地突出的岬角。
  • On the map that promontory looks like a nose,naughtily turned up.从地图上面,那个海角就像一只调皮地翘起来的鼻子。
40 miller ZD6xf     
n.磨坊主
参考例句:
  • Every miller draws water to his own mill.磨坊主都往自己磨里注水。
  • The skilful miller killed millions of lions with his ski.技术娴熟的磨坊主用雪橇杀死了上百万头狮子。
41 conglomerate spBz6     
n.综合商社,多元化集团公司
参考例句:
  • The firm has been taken over by an American conglomerate.该公司已被美国一企业集团接管。
  • An American conglomerate holds a major share in the company.一家美国的大联合企业持有该公司的大部分股份。
42 igneous DyAyL     
adj.火的,火绒的
参考例句:
  • Igneous rocks do not contain fossils.火成岩不含化石。
  • The rocks here are igneous and do not fracture along predictable lines.这儿的石头都是火成岩,石头的裂缝极不规则。
43 geologists 1261592151f6aa40819f7687883760a2     
地质学家,地质学者( geologist的名词复数 )
参考例句:
  • Geologists uncovered the hidden riches. 地质学家发现了地下的宝藏。
  • Geologists study the structure of the rocks. 地质学家研究岩石结构。
44 volcanic BLgzQ     
adj.火山的;象火山的;由火山引起的
参考例句:
  • There have been several volcanic eruptions this year.今年火山爆发了好几次。
  • Volcanic activity has created thermal springs and boiling mud pools.火山活动产生了温泉和沸腾的泥浆池。
45 perpendicular GApy0     
adj.垂直的,直立的;n.垂直线,垂直的位置
参考例句:
  • The two lines of bones are set perpendicular to one another.这两排骨头相互垂直。
  • The wall is out of the perpendicular.这墙有些倾斜。
46 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
47 vertical ZiywU     
adj.垂直的,顶点的,纵向的;n.垂直物,垂直的位置
参考例句:
  • The northern side of the mountain is almost vertical.这座山的北坡几乎是垂直的。
  • Vertical air motions are not measured by this system.垂直气流的运动不用这种系统来测量。
48 displacement T98yU     
n.移置,取代,位移,排水量
参考例句:
  • They said that time is the feeling of spatial displacement.他们说时间是空间位移的感觉。
  • The displacement of all my energy into caring for the baby.我所有精力都放在了照顾宝宝上。
49 varied giIw9     
adj.多样的,多变化的
参考例句:
  • The forms of art are many and varied.艺术的形式是多种多样的。
  • The hotel has a varied programme of nightly entertainment.宾馆有各种晚间娱乐活动。
50 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
51 prodigious C1ZzO     
adj.惊人的,奇妙的;异常的;巨大的;庞大的
参考例句:
  • This business generates cash in prodigious amounts.这种业务收益丰厚。
  • He impressed all who met him with his prodigious memory.他惊人的记忆力让所有见过他的人都印象深刻。
52 smoothly iiUzLG     
adv.平滑地,顺利地,流利地,流畅地
参考例句:
  • The workmen are very cooperative,so the work goes on smoothly.工人们十分合作,所以工作进展顺利。
  • Just change one or two words and the sentence will read smoothly.这句话只要动一两个字就顺了。
53 eternity Aiwz7     
n.不朽,来世;永恒,无穷
参考例句:
  • The dull play seemed to last an eternity.这场乏味的剧似乎演个没完没了。
  • Finally,Ying Tai and Shan Bo could be together for all of eternity.英台和山伯终能双宿双飞,永世相随。
54 tempted b0182e969d369add1b9ce2353d3c6ad6     
v.怂恿(某人)干不正当的事;冒…的险(tempt的过去分词)
参考例句:
  • I was sorely tempted to complain, but I didn't. 我极想发牢骚,但还是没开口。
  • I was tempted by the dessert menu. 甜食菜单馋得我垂涎欲滴。
55 memoir O7Hz7     
n.[pl.]回忆录,自传;记事录
参考例句:
  • He has just published a memoir in honour of his captain.他刚刚出了一本传记来纪念他的队长。
  • In her memoir,the actress wrote about the bittersweet memories of her first love.在那个女演员的自传中,她写到了自己苦乐掺半的初恋。
56 dome 7s2xC     
n.圆屋顶,拱顶
参考例句:
  • The dome was supported by white marble columns.圆顶由白色大理石柱支撑着。
  • They formed the dome with the tree's branches.他们用树枝搭成圆屋顶。
57 underlies d9c77c83f8c2ab289262fec743f08dd0     
v.位于或存在于(某物)之下( underlie的第三人称单数 );构成…的基础(或起因),引起
参考例句:
  • I think a lack of confidence underlies his manner. 我认为他表现出的态度是因为他缺乏信心。 来自《简明英汉词典》
  • Try to figure out what feeling underlies your anger. 努力找出你的愤怒之下潜藏的情感。 来自辞典例句
58 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
59 extremity tlgxq     
n.末端,尽头;尽力;终极;极度
参考例句:
  • I hope you will help them in their extremity.我希望你能帮助在穷途末路的他们。
  • What shall we do in this extremity?在这种极其困难的情况下我们该怎么办呢?
60 requisite 2W0xu     
adj.需要的,必不可少的;n.必需品
参考例句:
  • He hasn't got the requisite qualifications for the job.他不具备这工作所需的资格。
  • Food and air are requisite for life.食物和空气是生命的必需品。
61 denuded ba5f4536d3dc9e19e326d6497e9de1f7     
adj.[医]变光的,裸露的v.使赤裸( denude的过去式和过去分词 );剥光覆盖物
参考例句:
  • hillsides denuded of trees 光秃秃没有树的山坡
  • In such areas we see villages denuded of young people. 在这些地区,我们在村子里根本看不到年轻人。 来自辞典例句
62 indented bqKz7f     
adj.锯齿状的,高低不平的;缩进排版
参考例句:
  • His voyage was down Chile's indented coastline.他的航行沿智利参差曲折的海岸线行进。
  • Each paragraph of the body is usually indented five blocks.正文每段开始,一般缩进五个英文字母。
63 cape ITEy6     
n.海角,岬;披肩,短披风
参考例句:
  • I long for a trip to the Cape of Good Hope.我渴望到好望角去旅行。
  • She was wearing a cape over her dress.她在外套上披着一件披肩。
64 paltry 34Cz0     
adj.无价值的,微不足道的
参考例句:
  • The parents had little interest in paltry domestic concerns.那些家长对家里鸡毛蒜皮的小事没什么兴趣。
  • I'm getting angry;and if you don't command that paltry spirit of yours.我要生气了,如果你不能振作你那点元气。
65 behold jQKy9     
v.看,注视,看到
参考例句:
  • The industry of these little ants is wonderful to behold.这些小蚂蚁辛勤劳动的样子看上去真令人惊叹。
  • The sunrise at the seaside was quite a sight to behold.海滨日出真是个奇景。
66 specimen Xvtwm     
n.样本,标本
参考例句:
  • You'll need tweezers to hold up the specimen.你要用镊子来夹这标本。
  • This specimen is richly variegated in colour.这件标本上有很多颜色。
67 specimens 91fc365099a256001af897127174fcce     
n.样品( specimen的名词复数 );范例;(化验的)抽样;某种类型的人
参考例句:
  • Astronauts have brought back specimens of rock from the moon. 宇航员从月球带回了岩石标本。
  • The traveler brought back some specimens of the rocks from the mountains. 那位旅行者从山上带回了一些岩石标本。 来自《简明英汉词典》
68 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
69 embed SqjxX     
vt.把…嵌(埋、插)入,扎牢;使深留脑中
参考例句:
  • The harpoon struck but did not embed.鱼叉击中了但并没有插入。
  • This photo showed us how did the root of plant embed the soil deeply.这张照片显示植物的根是如何深入到土壤里去的。
70 tint ZJSzu     
n.淡色,浅色;染发剂;vt.着以淡淡的颜色
参考例句:
  • You can't get up that naturalness and artless rosy tint in after days.你今后不再会有这种自然和朴实无华的红润脸色。
  • She gave me instructions on how to apply the tint.她告诉我如何使用染发剂。
71 bespeaks 826c06302d7470602888c505e5806c12     
v.预定( bespeak的第三人称单数 );订(货);证明;预先请求
参考例句:
  • The tone of his text bespeaks a certain tiredness. 他的笔调透出一种倦意。 来自辞典例句
  • His record as mayor of New York bespeaks toughness. 他作为纽约市长态度十分强烈。 来自互联网
72 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
73 underlying 5fyz8c     
adj.在下面的,含蓄的,潜在的
参考例句:
  • The underlying theme of the novel is very serious.小说隐含的主题是十分严肃的。
  • This word has its underlying meaning.这个单词有它潜在的含义。
74 embedded lt9ztS     
a.扎牢的
参考例句:
  • an operation to remove glass that was embedded in his leg 取出扎入他腿部玻璃的手术
  • He has embedded his name in the minds of millions of people. 他的名字铭刻在数百万人民心中。
75 gravel s6hyT     
n.砂跞;砂砾层;结石
参考例句:
  • We bought six bags of gravel for the garden path.我们购买了六袋碎石用来铺花园的小路。
  • More gravel is needed to fill the hollow in the drive.需要更多的砾石来填平车道上的坑洼。
76 percolation 766e454de7819792a2c54a57104a44d4     
n.过滤,浸透;渗滤;渗漏
参考例句:
  • This corresponds to the percolation phase of the drying mechanism. 这相当于干化机理的渗滤阶段。 来自辞典例句
  • The percolation clusters with various occupying probability are constructed. 构造了具有不同占据概率的逾渗集团。 来自互联网
77 strictly GtNwe     
adv.严厉地,严格地;严密地
参考例句:
  • His doctor is dieting him strictly.他的医生严格规定他的饮食。
  • The guests were seated strictly in order of precedence.客人严格按照地位高低就座。
78 littoral J0vx5     
adj.海岸的;湖岸的;n.沿(海)岸地区
参考例句:
  • We should produce the littoral advantage well.我们应该把海滨的优势很好地发挥出来。
  • The reservoir sandstone was believed to have been deposited in a littoral environment.储集层砂岩就被认为是近海环境的沉积。
79 Mediterranean ezuzT     
adj.地中海的;地中海沿岸的
参考例句:
  • The houses are Mediterranean in character.这些房子都属地中海风格。
  • Gibraltar is the key to the Mediterranean.直布罗陀是地中海的要冲。
80 partially yL7xm     
adv.部分地,从某些方面讲
参考例句:
  • The door was partially concealed by the drapes.门有一部分被门帘遮住了。
  • The police managed to restore calm and the curfew was partially lifted.警方设法恢复了平静,宵禁部分解除。
81 analogous aLdyQ     
adj.相似的;类似的
参考例句:
  • The two situations are roughly analogous.两种情況大致相似。
  • The company is in a position closely analogous to that of its main rival.该公司与主要竞争对手的处境极为相似。
82 superfluous EU6zf     
adj.过多的,过剩的,多余的
参考例句:
  • She fined away superfluous matter in the design. 她删去了这图案中多余的东西。
  • That request seemed superfluous when I wrote it.我这样写的时候觉得这个请求似乎是多此一举。
83 preservation glnzYU     
n.保护,维护,保存,保留,保持
参考例句:
  • The police are responsible for the preservation of law and order.警察负责维持法律与秩序。
  • The picture is in an excellent state of preservation.这幅画保存得极为完好。
84 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
85 tabulated cb52faa26d48a2b1eb53a125f5fad3c3     
把(数字、事实)列成表( tabulate的过去式和过去分词 )
参考例句:
  • Results for the test program haven't been tabulated. 试验的结果还没有制成表格。
  • A large number of substances were investigated and the relevant properties tabulated. 已经研究了多种物质,并将有关性质列成了表。
86 consecutive DpPz0     
adj.连续的,联贯的,始终一贯的
参考例句:
  • It has rained for four consecutive days.已连续下了四天雨。
  • The policy of our Party is consecutive.我党的政策始终如一。
87 skilful 8i2zDY     
(=skillful)adj.灵巧的,熟练的
参考例句:
  • The more you practise,the more skilful you'll become.练习的次数越多,熟练的程度越高。
  • He's not very skilful with his chopsticks.他用筷子不大熟练。
88 peculiar cinyo     
adj.古怪的,异常的;特殊的,特有的
参考例句:
  • He walks in a peculiar fashion.他走路的样子很奇特。
  • He looked at me with a very peculiar expression.他用一种很奇怪的表情看着我。
89 ascertained e6de5c3a87917771a9555db9cf4de019     
v.弄清,确定,查明( ascertain的过去式和过去分词 )
参考例句:
  • The previously unidentified objects have now been definitely ascertained as being satellites. 原来所说的不明飞行物现在已证实是卫星。 来自《简明英汉词典》
  • I ascertained that she was dead. 我断定她已经死了。 来自《简明英汉词典》
90 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
91 intermittent ebCzV     
adj.间歇的,断断续续的
参考例句:
  • Did you hear the intermittent sound outside?你听见外面时断时续的声音了吗?
  • In the daytime intermittent rains freshened all the earth.白天里,时断时续地下着雨,使整个大地都生气勃勃了。
92 fauna 9kExx     
n.(一个地区或时代的)所有动物,动物区系
参考例句:
  • This National Park is an area with unique fauna and flora.该国家公园区域内具有独特的动物种群和植物种群。
  • Fauna is a biological notion means all the animal life in a particular region or period. 动物群是一个生物学的概念,指的是一个特定时期或者地区的所有动物。
93 scantily be1ceda9654bd1b9c4ad03eace2aae48     
adv.缺乏地;不充足地;吝啬地;狭窄地
参考例句:
  • The bedroom was scantily furnished. 卧室里几乎没有什么家具。 来自《简明英汉词典》
  • His room was scantily furnished. 他的房间陈设简陋。 来自互联网
94 faunas 1945a7981e63bcd2918b213ca96dbf4d     
动物群
参考例句:
  • Brackish waters generally support only a small range of faunas. 咸水水域通常只能存活为数不多的几种动物。
  • We shall appreciate this difficulty more clearly, by looking to certain existing faunas and floras. 通过观察某些现存的动物群和植物群,我们就能更清楚地了解这种困难了。
95 incessant WcizU     
adj.不停的,连续的
参考例句:
  • We have had incessant snowfall since yesterday afternoon.从昨天下午开始就持续不断地下雪。
  • She is tired of his incessant demands for affection.她厌倦了他对感情的不断索取。
96 subside OHyzt     
vi.平静,平息;下沉,塌陷,沉降
参考例句:
  • The emotional reaction which results from a serious accident takes time to subside.严重事故所引起的情绪化的反应需要时间来平息。
  • The controversies surrounding population growth are unlikely to subside soon.围绕着人口增长问题的争论看来不会很快平息。
97 affected TzUzg0     
adj.不自然的,假装的
参考例句:
  • She showed an affected interest in our subject.她假装对我们的课题感到兴趣。
  • His manners are affected.他的态度不自然。
98 stationary CuAwc     
adj.固定的,静止不动的
参考例句:
  • A stationary object is easy to be aimed at.一个静止不动的物体是容易瞄准的。
  • Wait until the bus is stationary before you get off.你要等公共汽车停稳了再下车。
99 elevation bqsxH     
n.高度;海拔;高地;上升;提高
参考例句:
  • The house is at an elevation of 2,000 metres.那幢房子位于海拔两千米的高处。
  • His elevation to the position of General Manager was announced yesterday.昨天宣布他晋升总经理职位。
100 accurately oJHyf     
adv.准确地,精确地
参考例句:
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
101 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
102 extinction sPwzP     
n.熄灭,消亡,消灭,灭绝,绝种
参考例句:
  • The plant is now in danger of extinction.这种植物现在有绝种的危险。
  • The island's way of life is doomed to extinction.这个岛上的生活方式注定要消失。
103 worthy vftwB     
adj.(of)值得的,配得上的;有价值的
参考例句:
  • I did not esteem him to be worthy of trust.我认为他不值得信赖。
  • There occurred nothing that was worthy to be mentioned.没有值得一提的事发生。
104 deference mmKzz     
n.尊重,顺从;敬意
参考例句:
  • Do you treat your parents and teachers with deference?你对父母师长尊敬吗?
  • The major defect of their work was deference to authority.他们的主要缺陷是趋从权威。
105 migration mDpxj     
n.迁移,移居,(鸟类等的)迁徙
参考例句:
  • Swallows begin their migration south in autumn.燕子在秋季开始向南方迁移。
  • He described the vernal migration of birds in detail.他详细地描述了鸟的春季移居。
106 immigrated a70310c0c8ae40c26c39d8d0d0f7bb0d     
v.移入( immigrate的过去式和过去分词 );移民
参考例句:
  • He immigrated from Ulster in 1848. 他1848年从阿尔斯特移民到这里。 来自辞典例句
  • Many Pakistanis have immigrated to Britain. 许多巴基斯坦人移居到了英国。 来自辞典例句
107 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
108 inordinately 272444323467c5583592cff7e97a03df     
adv.无度地,非常地
参考例句:
  • But if you are determined to accumulate wealth, it isn't inordinately difficult. 不过,如果你下决心要积累财富,事情也不是太难。 来自互联网
  • She was inordinately smart. 她非常聪明。 来自互联网
109 geographical Cgjxb     
adj.地理的;地区(性)的
参考例句:
  • The current survey will have a wider geographical spread.当前的调查将在更广泛的地域范围內进行。
  • These birds have a wide geographical distribution.这些鸟的地理分布很广。
110 epoch riTzw     
n.(新)时代;历元
参考例句:
  • The epoch of revolution creates great figures.革命时代造就伟大的人物。
  • We're at the end of the historical epoch,and at the dawn of another.我们正处在一个历史时代的末期,另一个历史时代的开端。
111 contingency vaGyi     
n.意外事件,可能性
参考例句:
  • We should be prepared for any contingency.我们应该对任何应急情况有所准备。
  • A fire in our warehouse was a contingency that we had not expected.库房的一场大火是我们始料未及的。
112 inspection y6TxG     
n.检查,审查,检阅
参考例句:
  • On random inspection the meat was found to be bad.经抽查,发现肉变质了。
  • The soldiers lined up for their daily inspection by their officers.士兵们列队接受军官的日常检阅。
113 standing 2hCzgo     
n.持续,地位;adj.永久的,不动的,直立的,不流动的
参考例句:
  • After the earthquake only a few houses were left standing.地震过后只有几幢房屋还立着。
  • They're standing out against any change in the law.他们坚决反对对法律做任何修改。
114 abrupt 2fdyh     
adj.突然的,意外的;唐突的,鲁莽的
参考例句:
  • The river takes an abrupt bend to the west.这河突然向西转弯。
  • His abrupt reply hurt our feelings.他粗鲁的回答伤了我们的感情。
115 naturalists 3ab2a0887de0af0a40c2f2959e36fa2f     
n.博物学家( naturalist的名词复数 );(文学艺术的)自然主义者
参考例句:
  • Naturalists differ much in determining what characters are of generic value. 自然学者对于不同性状决定生物的属的含义上,各有各的见解。 来自辞典例句
  • This fact has led naturalists to believe that the Isthmus was formerly open. 使许多自然学者相信这个地蛱在以前原是开通的。 来自辞典例句
116 naturalist QFKxZ     
n.博物学家(尤指直接观察动植物者)
参考例句:
  • He was a printer by trade and naturalist by avocation.他从事印刷业,同时是个博物学爱好者。
  • The naturalist told us many stories about birds.博物学家给我们讲述了许多有关鸟儿的故事。
117 lessen 01gx4     
vt.减少,减轻;缩小
参考例句:
  • Regular exercise can help to lessen the pain.经常运动有助于减轻痛感。
  • They've made great effort to lessen the noise of planes.他们尽力减小飞机的噪音。
118 aboriginal 1IeyD     
adj.(指动植物)土生的,原产地的,土著的
参考例句:
  • They managed to wipe out the entire aboriginal population.他们终于把那些土著人全部消灭了。
  • The lndians are the aboriginal Americans.印第安人是美国的土著人。
119 perfectly 8Mzxb     
adv.完美地,无可非议地,彻底地
参考例句:
  • The witnesses were each perfectly certain of what they said.证人们个个对自己所说的话十分肯定。
  • Everything that we're doing is all perfectly above board.我们做的每件事情都是光明正大的。
120 contingencies ae3107a781f5a432c8e43398516126af     
n.偶然发生的事故,意外事故( contingency的名词复数 );以备万一
参考例句:
  • We must consider all possible contingencies. 我们必须考虑一切可能发生的事。
  • We must be prepared for all contingencies. 我们要作好各种准备,以防意外。 来自辞典例句
121 lengthy f36yA     
adj.漫长的,冗长的
参考例句:
  • We devoted a lengthy and full discussion to this topic.我们对这个题目进行了长时间的充分讨论。
  • The professor wrote a lengthy book on Napoleon.教授写了一部有关拿破仑的巨著。
122 modifications aab0760046b3cea52940f1668245e65d     
n.缓和( modification的名词复数 );限制;更改;改变
参考例句:
  • The engine was pulled apart for modifications and then reassembled. 发动机被拆开改型,然后再组装起来。 来自《简明英汉词典》
  • The original plan had undergone fairly extensive modifications. 原计划已经作了相当大的修改。 来自《简明英汉词典》
123 decided lvqzZd     
adj.决定了的,坚决的;明显的,明确的
参考例句:
  • This gave them a decided advantage over their opponents.这使他们比对手具有明显的优势。
  • There is a decided difference between British and Chinese way of greeting.英国人和中国人打招呼的方式有很明显的区别。
124 progenitors a94fd5bd89007bd4e14e8ea41b9af527     
n.祖先( progenitor的名词复数 );先驱;前辈;原本
参考例句:
  • The researchers also showed that the progenitors mature into neurons in Petri dishes. 研究人员还表示,在佩特里培养皿中的脑细胞前体可以发育成神经元。 来自英汉非文学 - 生命科学 - 大脑与疾病
  • Though I am poor and wretched now, my progenitors were famously wealthy. 别看我现在穷困潦倒,我家上世可是有名的富翁。 来自互联网
125 multiplication i15yH     
n.增加,增多,倍增;增殖,繁殖;乘法
参考例句:
  • Our teacher used to drum our multiplication tables into us.我们老师过去老是让我们反覆背诵乘法表。
  • The multiplication of numbers has made our club building too small.会员的增加使得我们的俱乐部拥挤不堪。
126 illustrate IaRxw     
v.举例说明,阐明;图解,加插图
参考例句:
  • The company's bank statements illustrate its success.这家公司的银行报表说明了它的成功。
  • This diagram will illustrate what I mean.这个图表可说明我的意思。
127 abruptly iINyJ     
adv.突然地,出其不意地
参考例句:
  • He gestured abruptly for Virginia to get in the car.他粗鲁地示意弗吉尼亚上车。
  • I was abruptly notified that a half-hour speech was expected of me.我突然被通知要讲半个小时的话。
128 justify j3DxR     
vt.证明…正当(或有理),为…辩护
参考例句:
  • He tried to justify his absence with lame excuses.他想用站不住脚的借口为自己的缺席辩解。
  • Can you justify your rude behavior to me?你能向我证明你的粗野行为是有道理的吗?
129 fathoms eef76eb8bfaf6d8f8c0ed4de2cf47dcc     
英寻( fathom的名词复数 )
参考例句:
  • The harbour is four fathoms deep. 港深为四英寻。
  • One bait was down forty fathoms. 有个鱼饵下沉到四十英寻的深处。
130 positively vPTxw     
adv.明确地,断然,坚决地;实在,确实
参考例句:
  • She was positively glowing with happiness.她满脸幸福。
  • The weather was positively poisonous.这天气着实讨厌。
131 affinities 6d46cb6c8d10f10c6f4b77ba066932cc     
n.密切关系( affinity的名词复数 );亲近;(生性)喜爱;类同
参考例句:
  • Cubism had affinities with the new European interest in Jazz. 主体派和欧洲新近的爵士音乐热有密切关系。 来自辞典例句
  • The different isozymes bind calcium ions with different affinities. 不同的同功酶以不同的亲和力与钙离子相结合。 来自辞典例句
132 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
133 simultaneously 4iBz1o     
adv.同时发生地,同时进行地
参考例句:
  • The radar beam can track a number of targets almost simultaneously.雷达波几乎可以同时追着多个目标。
  • The Windows allow a computer user to execute multiple programs simultaneously.Windows允许计算机用户同时运行多个程序。
134 capes 2a2d1f6d8808b81a9484709d3db50053     
碎谷; 斗篷( cape的名词复数 ); 披肩; 海角; 岬
参考例句:
  • It was cool and they were putting on their capes. 夜里阴冷,他们都穿上了披风。
  • The pastor smiled to give son's two Capes five cents money. 牧师微笑着给了儿子二角五分钱。
135 allude vfdyW     
v.提及,暗指
参考例句:
  • Many passages in Scripture allude to this concept.圣经中有许多经文间接地提到这样的概念。
  • She also alluded to her rival's past marital troubles.她还影射了对手过去的婚姻问题。
136 crustacean Mnrzu     
n.甲壳动物;adj.甲壳纲的
参考例句:
  • Seafood is a valuable lobster crustacean section.名贵海珍品龙虾属甲壳科。
  • The illustrious Cuvier did not perceive that a barnacle was a crustacean.大名鼎鼎的居维叶也未看出藤壶是一种甲壳动物。
137 supplanted 1f49b5af2ffca79ca495527c840dffca     
把…排挤掉,取代( supplant的过去式和过去分词 )
参考例句:
  • In most offices, the typewriter has now been supplanted by the computer. 当今许多办公室里,打字机已被电脑取代。
  • The prime minister was supplanted by his rival. 首相被他的政敌赶下台了。
138 swarmed 3f3ff8c8e0f4188f5aa0b8df54637368     
密集( swarm的过去式和过去分词 ); 云集; 成群地移动; 蜜蜂或其他飞行昆虫成群地飞来飞去
参考例句:
  • When the bell rang, the children swarmed out of the school. 铃声一响,孩子们蜂拥而出离开了学校。
  • When the rain started the crowd swarmed back into the hotel. 雨一开始下,人群就蜂拥回了旅社。
139 primordial 11PzK     
adj.原始的;最初的
参考例句:
  • It is the primordial force that propels us forward.它是推动我们前进的原始动力。
  • The Neanderthal Man is one of our primordial ancestors.的尼安德特人是我们的原始祖先之一.
140 eminent dpRxn     
adj.显赫的,杰出的,有名的,优良的
参考例句:
  • We are expecting the arrival of an eminent scientist.我们正期待一位著名科学家的来访。
  • He is an eminent citizen of China.他是一个杰出的中国公民。
141 abounding 08610fbc6d1324db98066903c8e6c455     
adj.丰富的,大量的v.大量存在,充满,富于( abound的现在分词 )
参考例句:
  • Ahead lay the scalloped ocean and the abounding blessed isles. 再往前是水波荡漾的海洋和星罗棋布的宝岛。 来自英汉文学 - 盖茨比
  • The metallic curve of his sheep-crook shone silver-bright in the same abounding rays. 他那弯柄牧羊杖上的金属曲线也在这一片炽盛的火光下闪着银亮的光。 来自辞典例句
142 obliterated 5b21c854b61847047948152f774a0c94     
v.除去( obliterate的过去式和过去分词 );涂去;擦掉;彻底破坏或毁灭
参考例句:
  • The building was completely obliterated by the bomb. 炸弹把那座建筑物彻底摧毁了。
  • He began to drink, drank himself to intoxication, till he slept obliterated. 他一直喝,喝到他快要迷糊地睡着了。 来自《简明英汉词典》
143 inexplicable tbCzf     
adj.无法解释的,难理解的
参考例句:
  • It is now inexplicable how that development was misinterpreted.当时对这一事态发展的错误理解究竟是怎么产生的,现在已经无法说清楚了。
  • There are many things which are inexplicable by science.有很多事科学还无法解释。
144 valid eiCwm     
adj.有确实根据的;有效的;正当的,合法的
参考例句:
  • His claim to own the house is valid.他主张对此屋的所有权有效。
  • Do you have valid reasons for your absence?你的缺席有正当理由吗?
145 tracts fcea36d422dccf9d9420a7dd83bea091     
大片土地( tract的名词复数 ); 地带; (体内的)道; (尤指宣扬宗教、伦理或政治的)短文
参考例句:
  • vast tracts of forest 大片大片的森林
  • There are tracts of desert in Australia. 澳大利亚有大片沙漠。
146 continental Zazyk     
adj.大陆的,大陆性的,欧洲大陆的
参考例句:
  • A continental climate is different from an insular one.大陆性气候不同于岛屿气候。
  • The most ancient parts of the continental crust are 4000 million years old.大陆地壳最古老的部分有40亿年历史。
147 justified 7pSzrk     
a.正当的,有理的
参考例句:
  • She felt fully justified in asking for her money back. 她认为有充分的理由要求退款。
  • The prisoner has certainly justified his claims by his actions. 那个囚犯确实已用自己的行动表明他的要求是正当的。
148 subsided 1bda21cef31764468020a8c83598cc0d     
v.(土地)下陷(因在地下采矿)( subside的过去式和过去分词 );减弱;下降至较低或正常水平;一下子坐在椅子等上
参考例句:
  • After the heavy rains part of the road subsided. 大雨过后,部分公路塌陷了。 来自《简明英汉词典》
  • By evening the storm had subsided and all was quiet again. 傍晚, 暴风雨已经过去,四周开始沉寂下来。 来自《现代汉英综合大词典》
149 anterior mecyi     
adj.较早的;在前的
参考例句:
  • We've already finished the work anterior to the schedule.我们已经提前完成了工作。
  • The anterior part of a fish contains the head and gills.鱼的前部包括头和鳃。
150 undoubtedly Mfjz6l     
adv.确实地,无疑地
参考例句:
  • It is undoubtedly she who has said that.这话明明是她说的。
  • He is undoubtedly the pride of China.毫无疑问他是中国的骄傲。
151 vehemently vehemently     
adv. 热烈地
参考例句:
  • He argued with his wife so vehemently that he talked himself hoarse. 他和妻子争论得很激烈,以致讲话的声音都嘶哑了。
  • Both women vehemently deny the charges against them. 两名妇女都激烈地否认了对她们的指控。
152 immutability Camx4     
n.不变(性)
参考例句:
  • Farmers all over the globe knowinging the importance and immutability the seasons. 全全地球的农民们都明白季节的很重要性和永恒性。
  • The immutability of God is a strong ground of consolation and encourages hope and confidence. 上帝的不变性乃是我们安慰的坚固根基,鼓励我们充满著盼望,信心。
153 metaphor o78zD     
n.隐喻,暗喻
参考例句:
  • Using metaphor,we say that computers have senses and a memory.打个比方,我们可以说计算机有感觉和记忆力。
  • In poetry the rose is often a metaphor for love.玫瑰在诗中通常作为爱的象征。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533