小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » The Power of Movement in Plants » CHAPTER I. THE CIRCUMNUTATING MOVEMENTS OF SEEDLING PLANTS.
选择底色: 选择字号:【大】【中】【小】
CHAPTER I. THE CIRCUMNUTATING MOVEMENTS OF SEEDLING PLANTS.
关注小说网官方公众号(noveltingroom),原版名著免费领。
   Brassica oleracea, circumnutation of the radicle, of the arched hypocotyl
  whilst still buried beneath the ground, whilst rising above the ground and
  straightening itself, and when erect—Circumnutation of the cotyledons—
  Rate of movement—Analogous observations on various organs in species of
  Githago, Gossypium, Oxalis, Tropaeolum, Citrus, Aesculus, of several
  Leguminous and Cucurbitaceous genera, Opuntia, Helianthus, Primula,
  Cyclamen, Stapelia, Cerinthe, Nolana, Solanum, Beta, Ricinus, Quercus,
  Corylus, Pinus, Cycas, Canna, Allium, Asparagus, Phalaris, Zea, Avena,
  Nephrodium, and Selaginella.
THE following chapter is devoted1 to the circumnutating movements of the radicles, hypocotyls, and cotyledons of seedling2 plants; and, when the cotyledons do not rise above the ground, to the movements of the epicotyl. But in a future chapter we shall have to recur3 to the movements of certain cotyledons which sleep at night.
 
[Brassica oleracea (Cruciferae)'.—Fuller details will be given with respect to the movements in this case than in any other, as space and time will thus ultimately be saved.
 
Radicle.—A seed with the radicle projecting .05 inch was fastened with shellac to a little plate of zinc4, so that the radicle stood up vertically6; and a fine glass filament7 was then fixed8 near its base, that is, close to the seed-coats. The seed was surrounded by little bits of wet sponge, and the movement of the bead9 at the end of the filament was traced (Fig10. 1) during sixty hours. In this time the radicle increased in length from .05 to .11 inch. Had the filament been attached at first close to the apex11 of the radicle, and if it could have remained there all the time, the movement exhibited would have [page 11] been much greater, for at the close of our observations the tip, instead of standing12 vertically upwards13, had become bowed downwards14 through geotropism, so as almost to touch the zinc plate. As far as we could roughly ascertain15 by measurements made with compasses on other seeds, the tip alone, for a length of only 2/100 to 3/100 of an inch, is acted on by geotropism. But the tracing shows that the basal part of the radicle continued to circumnutate irregularly during the whole time. The actual extreme amount of movement of the bead at the end of the filament was nearly .05 inch, but to what extent the movement of the radicle was magnified by the filament, which was nearly 3/4 inch in length, it was impossible to estimate.
 
Fig. 1. Brassica oleracea: circumnutation of radicle, traced on horizontal glass, from 9 A.M. Jan. 31st to 9 P.M. Feb. 2nd. Movement of bead at end of filament magnified about 40 times.
 
Another seed was treated and observed in the same manner, but the radicle in this case protruded17 .1 inch, and was not Fig. 2. Brassica oleracea: circumnutating and geotropic movement of radicle, traced on horizontal glass during 46 hours.
 
fastened so as to project quite vertically upwards. The filament was affixed18 close to its base. The tracing (Fig. 2, reduced by half) shows the movement from 9 A.M. Jan. 31st to 7 A.M. Feb. 2nd; but it continued to move during the whole of the [page 12] 2nd in the same general direction, and in a similar zigzag19 manner. From the radicle not being quite perpendicular20 when the filament was affixed geotropism came into play at once; but the irregular zigzag course shows that there was growth (probably preceded by turgescence), sometimes on one and sometimes on another side. Occasionally the bead remained stationary21 for about an hour, and then probably growth occurred on the side opposite to that which caused the geotropic curvature. In the case previously22 described the basal part of the very short radicle from being turned vertically upwards, was at first very little affected24 by geotropism. Filaments25 were affixed in two other instances to rather longer radicles protruding26 obliquely27 from seeds which had been turned upside down; and in these cases the lines traced on the horizontal glasses were only slightly zigzag, and the movement was always in the same general direction, through the action of geotropism. All these observations are liable to several causes of error, but we believe, from what will hereafter be shown with respect to the movements of the radicles of other plants, that they may be largely trusted.
 
Hypocotyl.—The hypocotyl protrudes29 through the seed-coats as a rectangular projection30, which grows rapidly into an arch like the letter U turned upside down; the cotyledons being still enclosed within the seed. In whatever position the seed may be embedded31 in the earth or otherwise fixed, both legs of the arch bend upwards through apogeotropism, and thus rise vertically above the ground. As soon as this has taken place, or even earlier, the inner or concave surface of the arch grows more quickly than the upper or convex surface; and this tends to separate the two legs and aids in drawing the cotyledons out of the buried seed-coats. By the growth of the whole arch the cotyledons are ultimately dragged from beneath the ground, even from a considerable depth; and now the hypocotyl quickly straightens itself by the increased growth of the concave side.
 
Even whilst the arched or doubled hypocotyl is still beneath the ground, it circumnutates as much as the pressure of the surrounding soil will permit; but this was difficult to observe, because as soon as the arch is freed from lateral32 pressure the two legs begin to separate, even at a very early age, before the arch would naturally have reached the surface. Seeds were allowed to germinate33 on the surface of damp earth, and after they had fixed themselves by their radicles, and after the, as yet, only [page 13] slightly arched hypocotyl had become nearly vertical5, a glass filament was affixed on two occasions near to the base of the basal leg (i.e. the one in connection with the radicle), and its movements were traced in darkness on a horizontal glass. The result was that long lines were formed running in nearly the plane of the vertical arch, due to the early separation of the two legs now freed from pressure; but as the lines were zigzag, showing lateral movement, the arch must have been circumnutating, whilst it was straightening itself by growth along its inner or concave surface.
 
A somewhat different method of observation was next followed: Fig. 3. Brassica oleracea: circumnutating movement of buried and arched hypocotyl (dimly illuminated34 from above), traced on horizontal glass during 45 hours. Movement of bead of filament magnified about 25 times, and here reduced to one-half of original scale.
 
as soon as the earth with seeds in a pot began to crack, the surface was removed in parts to the depth of .2 inch; and a filament was fixed to the basal leg of a buried and arched hypocotyl, just above the summit of the radicle. The cotyledons were still almost completely enclosed within the much-cracked seed-coats; and these were again covered up with damp adhesive35 soil pressed pretty firmly down. The movement of the filament was traced (Fig. 3) from 11 A.M. Feb. 5th till 8 A.M. Feb. 7th. By this latter period the cotyledons had been dragged from beneath the pressed-down earth, but the upper part of the hypocotyl still formed nearly a right angle with the lower part. The tracing shows that the arched hypocotyl tends at this early [page 14] age to circumnutate irregularly. On the first day the greater movement (from right to left in the figure) was not in the plane of the vertical and arched hypocotyl, but at right angles to it, or in the plane of the two cotyledons, which were still in close contact. The basal leg of the arch at the time when the filament was affixed to it, was already bowed considerably36 backwards37, or from the cotyledons; had the filament been affixed before this bowing occurred, the chief movement would have been at right angles to that shown in the figure. A filament was attached to another buried hypocotyl of the same age, and it moved in a similar general manner, but the line traced was not so complex. This hypocotyl became almost straight, and the cotyledons were dragged from beneath the ground on the evening of the second day.
 
Fig. 4. Brassica oleracea: circumnutating movement of buried and arched hypocotyl, with the two legs of the arch tied together, traced on horizontal glass during 33 ? hours. Movement of the bead of filament magnified about 26 times, and here reduced to one-half original scale.
 
Before the above observations were made, some arched hypocotyls buried at the depth of a quarter of an inch were uncovered; and in order to prevent the two legs of the arch from beginning to separate at once, they were tied together with fine silk. This was done partly because we wished to ascertain how long the hypocotyl, in its arched condition, would continue to move, and whether the movement when not masked and disturbed by the straightening process, indicated circumnutation. Firstly a filament was fixed to the basal leg of an arched hypocotyl close above the summit of the radicle. The cotyledons were still partially38 enclosed within the seed-coats. The movement was traced (Fig. 4) from 9.20 A.M. on Dec. [page 15] 23rd to 6.45 A.M. on Dec. 25th. No doubt the natural movement was much disturbed by the two legs having been tied together; but we see that it was distinctly zigzag, first in one direction and then in an almost opposite one. After 3 P.M. on the 24th the arched hypocotyl sometimes remained stationary for a considerable time, and when moving, moved far slower than before. Therefore, on the morning of the 25th, the glass filament was removed from the base of the basal leg, and was fixed horizontally on the summit of the arch, which, from the legs having been tied, had grown broad and almost flat. The movement was now traced during 23 hours (Fig. 5), and we
 
Fig. 5. Brassica oleracea: circumnutating movement of the crown of a buried and arched hypocotyl, with the two legs tied together, traced on a horizontal glass during 23 hours. Movement of the bead of the filament magnified about 58 times, and here reduced to one-half original scale.
 
see that the course was still zigzag, which indicates a tendency to circumnutation. The base of the basal leg by this time had almost completely ceased to move.
 
As soon as the cotyledons have been naturally dragged from beneath the ground, and the hypocotyl has straightened itself by growth along the inner or concave surface, there is nothing to interfere39 with the free movements of the parts; and the circumnutation now becomes much more regular and clearly displayed, as shown in the following cases:—A seedling was placed in front and near a north-east window with a line joining the [page 16] two cotyledons parallel to the window. It was thus left the whole day so as to accommodate itself to the light. On the following morning a filament was fixed to the midrib of the larger and taller cotyledon (which enfolds the other and smaller one, whilst still within the seed), and a mark being placed close behind, the movement of the whole plant, that is, of the hypocotyl and cotyledon, was traced greatly magnified on a vertical glass. At first the plant bent40 so much towards the light that it was useless to attempt to trace the movement; but at 10 A.M. heliotropism almost wholly ceased and the first dot was
 
Fig. 6. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons during 10 hours 45 minutes. Figure here reduced to one-half original scale.
 
made on the glass. The last was made at 8.45 P.M.; seventeen dots being altogether made in this interval42 of 10 h. 45 m. (see Fig. 6). It should be noticed that when I looked shortly after 4 P.M. the bead was pointing off the glass, but it came on again at 5.30 P.M., and the course during this interval of 1 h. 30 m. has been filled up by imagination, but cannot be far from correct. The bead moved seven times from side to side, and thus described 3 ? ellipses43 in 10 3/4 h.; each being completed on an average in 3 h. 4 m.
 
On the previous day another seedling had been observed under similar conditions, excepting that the plant was so [page 17] placed that a line joining the two cotyledons pointed44 towards the window; and the filament was attached to the smaller cotyledon on the side furthest from the window. Moreover the plant was now for the first time placed in this position. The cotyledons bowed themselves greatly towards the light from 8 to 10.50 A.M., when the first dot was made (Fig. 7). During the
 
Fig. 7. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons, from 10.50 A.M. to 8 A.M. on the following morning. Tracing made on a vertical glass.
 
next 12 hours the bead swept obliquely up and down 8 times and described 4 figures representing ellipses; so that it travelled at nearly the same rate as in the previous case. during the night it moved upwards, owing to the sleep-movement of the cotyledons, and continued to move in the same direction till 9 A.M. on the following morning; but this latter movement would not have occurred with seedlings45 under their natural conditions fully46 exposed to the light.
 
By 9.25 A.M. on this second day the same cotyledon had [page 18] begun to fall, and a dot was made on a fresh glass. The movement was traced until 5.30 P.M. as shown in (Fig. 8), which is given, because the course followed was much more irregular than on the two previous occasions. During these 8 hours the bead changed its course greatly 10 times. The upward movement of the cotyledon during the afternoon and early part of the night is here plainly shown.
 
Fig. 8. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons during 8 hours. Figure here reduced to one-third of the original scale, as traced on a vertical glass.
 
As the filaments were fixed in the three last cases to one of the cotyledons, and as the hypocotyl was left free, the tracings show the movement of both organs conjoined; and we now wished to ascertain whether both circumnutated. Filaments were therefore fixed horizontally to two hypocotyls close beneath the petioles of their cotyledons. These seedlings had stood for two days in the same position before a north-east window. In the morning, up to about 11 A.M., they moved in zigzag lines towards the light; and at night they again became almost upright through apogeotropism. After about 11 A.M. they moved a little back from the light, often crossing and recrossing their former path in zigzag lines. the sky on this day varied47 much in brightness, and these observations merely proved that the hypocotyls were continually moving in a manner resembling circumnutation. On a previous day which was uniformly cloudy, a hypocotyl was firmly secured to a little stick, and a filament was fixed to the larger of the two cotyledons, and its movement was traced on a vertical glass. It fell greatly from 8.52 A.M., when the first dot was made, till 10.55 A.M.; it then rose greatly until 12.17 P.M. Afterwards it fell a little and made a loop, but by 2.22 P.M. it had risen a little and continued rising till 9.23 P.M., when it made another loop, and at 10.30 P.M. was again rising. These observations show that the cotyledons move [page 19] vertically up and down all day long, and as there was some slight lateral movement, they circumnutated.
 
Fig. 9. Brassica oleracea: circumnutation of hypocotyl, in darkness, traced on a horizontal glass, by means of a filament with a bead fixed across its summit, between 9.15 A.M. and 8.30 A.M. on the following morning. Figure here reduced to one-half of original scale.
 
The cabbage was one of the first plants, the seedlings of which were observed by us, and we did not then know how far the circumnutation of the different parts was affected by light. Young seedlings were therefore kept in complete darkness except for a minute or two during each observation, when they were illuminated by a small wax taper48 held almost vertically above them. During the first day the hypocotyl of one changed its course 13 times (see Fig. 9); and it deserves notice that the longer axes of the figures described often cross one another at right or nearly right angles. Another seedling was observed in the same manner, but it was much older, for it had formed a true leaf a quarter of an inch in length, and the hypocotyl was 1 3/8 inch in height. The figure traced was a very complex one, though the movement was not so great in extent as in the last case.
 
The hypocotyl of another seedling of the same age was secured to a little stick, and a filament having been fixed to the midrib of one of the cotyledons, the movement of the bead was traced during 14 h. 15 m. (see Fig. 10) in darkness. It should be noted49 that the chief movement of the cotyledons, namely, up and down, would be shown on a horizontal glass-plate only by the lines in the direction of the midrib (that is, [page 20] up and down, as Fig. 10 here stands) being a little lengthened50 or shortened; whereas any lateral movement would be well exhibited. The present tracing shows that the cotyledon did thus move laterally51 (that is, from side to side in the tracing) 12 times in the 14 h. 15 m. of observation. Therefore the cotyledons certainly circumnutated, though the chief movement was up and down in a vertical plane.
 
Fig 10. Brassica oleracea: circumnutation of a cotyledon, the hypocotyl having been secured to a stick, traced on a horizontal glass, in darkness, from 8.15 A.M. to 10.30 P.M. Movement of the bead of the filament magnified 13 times.
 
Rate of Movement.—The movements of the hypocotyls and cotyledons of seedling cabbages of different ages have now been sufficiently52 illustrated53. With respect to the rate, seedlings were placed under the microscope with the stage removed, and with a micrometer eye-piece so adjusted that each division equalled 1/500 inch; the plants were illuminated by light passing through a solution of bichromate of potassium so as to eliminate heliotropism. Under these circumstances it was interesting to observe how rapidly the circumnutating apex of a cotyledon passed across the divisions of the micrometer. Whilst travelling in any direction the apex generally oscillated backwards and forwards to the extent of 1/500 and sometimes of nearly 1/250 of an inch. These oscillations were quite different from the trembling caused by any disturbance54 in the same room or by the shutting of a distant door. The first seedling observed was nearly two inches in height and had been etiolated by having been grown in darkness. The tip of the cotyledon passed across 10 divisions of the micrometer, that is, 1/50 of an inch, in 6 m. 40 s. Short glass filaments were then fixed vertically to the hypocotyls of several seedlings so as to project a little above the cotyledons, thus exaggerating the rate of movement; but only a few of the observations thus made are worth giving. The most remarkable55 fact was the oscillatory movement above described, and the difference of rate at which the point crossed the divisions of the micrometer, after short intervals56 of time. For instance, a tall not-etiolated seedling had been kept for 14 h. in darkness; it was exposed before a north-east window for only [page 21] two or three minutes whilst a glass filament was fixed vertically to the hypocotyl; it was then again placed in darkness for half an hour and afterwards observed by light passing through bichromate of potassium. The point, oscillating as usual, crossed five divisions of the micrometer (i.e. 1/100 inch) in 1 m. 30 s. The seedling was then left in darkness for an hour, and now it required 3 m. 6 s. to cross one division, that is, 15 m. 30 s. to have crossed five divisions. Another seedling, after being occasionally observed in the back part of a northern room with a very dull light, and left in complete darkness for intervals of half an hour, crossed five divisions in 5 m. in the direction of the window, so that we concluded that the movement was heliotropic. But this was probably not the case, for it was placed close to a north-east window and left there for 25 m., after which time, instead of moving still more quickly towards the light, as might have been expected, it travelled only at the rate of 12 m. 30 s. for five divisions. It was then again left in complete darkness for 1 h., and the point now travelled in the same direction as before, but at the rate of 3 m. 18 s. for five divisions.
 
We shall have to recur to the cotyledons of the cabbage in a future chapter, when we treat of their sleep-movements. The circumnutation, also, of the leaves of fully-developed plants will hereafter be described.
 
Fig. 11. Githago segetum: circumnutation of hypocotyl, traced on a horizontal glass, by means of a filament fixed transversely across its summit, from 8.15 A.M. to 12.15 P.M. on the following day. Movement of bead of filament magnified about 13 times, here reduced to one-half the original scale.
 
Githago segetum (Caryophylleae).—A young seedling was dimly illuminated from above, and the circumnutation of the hypo- [page 22] cotyl was observed during 28 h., as shown in Fig. 11. It moved in all directions; the lines from right and to left in the figure being parallel to the blades of the cotyledons. The actual distance travelled from side to side by the summit of the hypocotyl was about .2 of an inch; but it was impossible to be accurate on this head, as the more obliquely the plant was viewed, after it had moved for some time, the more the distances were exaggerated.
 
We endeavoured to observe the circumnutation of the cotyledons, but as they close together unless kept exposed to a moderately bright light, and as the hypocotyl is extremely heliotropic, the necessary arrangements were too troublesome. We shall recur to the nocturnal or sleep-movements of the cotyledons in a future chapter.
 
Fig. 12. Gossypium: circumnutation of hypocotyl, traced on a horizontal glass, from 10.30 A.M. to 9.30 A.M. on following morning, by means of a filament fixed across its summit. Movement of bead of filament magnified about twice; seedling illuminated from above.
 
Gossypium (var. Nankin cotton) (Malvaceae).—The circumnutation of a
hypocotyl was observed in the hot-house, but the movement was so much
exaggerated that the bead twice passed for a time out of view. It was,
however, manifest that two somewhat irregular ellipses were nearly
completed in 9 h. Another seedling, 1 ? in. in height, was then observed
during 23 h.; but the observations were not made at sufficiently short
intervals, as shown by the few dots in Fig. 12, and the tracing was not now
sufficiently enlarged. Nevertheless there could be no doubt about the
circumnutation of the hypocotyl, which described in 12 h. a figure
representing three irregular ellipses of unequal sizes.
 
 The cotyledons are in constant movement up and down during the whole day,
and as they offer the unusual case of moving downwards late in the evening
and in the early part of the night, many observations were made on them. A
filament was fixed along the middle of one, and its movement traced on a
vertical glass; but the tracing is not given, as the hypocotyl was not
secured, so that it was impossible to distinguish clearly between its
movement and that of the cotyledon. The cotyledons rose from 10.30 A.M. to
about 3 P.M.; they then sank till 10 P.M., rising, however, greatly in the
latter part of the night.
[page 23]
The angles above the horizon at which the cotyledons of another seedling
stood at different hours is recorded in the following short table: —
Oct. 20 2.50 P.M...25o above horizon. Oct. 20 4.20 P.M...22o above horizon. Oct. 20 5.20 P.M...15o above horizon. Oct. 20 10.40 P.M...8o above horizon. Oct. 21 8.40 A.M...28o above horizon. Oct. 21 11.15 A.M...35o above horizon. Oct. 21 9.11 P.M...10o below horizon.
 
The position of the two cotyledons was roughly sketched57 at various hours with the same general result.
 
In the following summer, the hypocotyl of a fourth seedling was secured to a little stick, and a glass filament with triangles of paper having been fixed to one of the cotyledons, its movements were traced on a vertical glass under a double skylight in the house. The first dot was made at 4.20 P.M. June 20th; and the cotyledon fell till 10.15 P.M. in a nearly straight line. Just past midnight it was found a little lower and somewhat to one side. By the early morning, at 3.45 A.M., it had risen greatly, but by 6.20 A.M. had fallen a little. During the whole of this day (21st) it fell in a slightly zigzag line, but its normal course was disturbed by the want of sufficient illumination, for during the night it rose only a little, and travelled irregularly during the whole of the following day and night of June 22nd. The ascending58 and descending59 lines traced during the three days did not coincide, so that the movement was one of circumnutation. This seedling was then taken back to the hot-house, and after five days was inspected at 10 P.M., when the cotyledons were found hanging so nearly vertically down, that they might justly be said to have been asleep. On the following morning they had resumed their usual horizontal position.
 
Oxalis rosea (Oxalideae).—The hypocotyl was secured to a little stick, and an extremely thin glass filament, with two triangles of paper, was attached to one of the cotyledons, which was .15 inch in length. In this and the following species the end of the petiole, where united to the blade, is developed into a pulvinus. The apex of the cotyledon stood only 5 inches from the vertical glass, so that its movement was not greatly exaggerated as long as it remained nearly horizontal; but in the course of the day it both rose considerably above and fell beneath a horizontal position, and then of course the movement was much exaggerated. [page 24] In Fig. 13 its course is shown from 6.45 A.M. on June 17th, to 7.40 A.M. on the following morning; and we see that during the daytime, in the course of 11 h. 15 m., it travelled thrice down and twice up. After 5.45 P.M. it moved rapidly downwards, and in an hour or two depended vertically; it thus remained all night asleep. This position could not be represented on the vertical glass nor in the figure here given. By 6.40 A.M. on the following morning (18th) both cotyledons had risen greatly, and they continued to rise until 8 A.M., when they stood almost horizontally. Their movement was traced during the whole of this day and until the next morning; but a tracing is not given, as it was closely similar to Fig. 13, excepting that the lines were more zigzag. The cotyledons moved 7 times, either upwards or downwards; and at about 4 P.M. the great nocturnal sinking movement commenced.
 
Fig. 13. Oxalis rosea: circumnutation of cotyledons, the hypocotyl being secured to a stick; illuminated from above. Figure here given one-half of original scale.
 
Another seedling was observed in a similar manner during nearly 24 h., but with the difference that the hypocotyl was left free. The movement also was less magnified. Between 8.12 A.M. and 5 P.M. on the 18th, the apex of the cotyledon moved 7 times upwards or downwards (Fig. 14). The nocturnal sinking movement, which is merely a great increase of one of the diurnal60 oscillations, commenced about 4 P.M.
 
Oxalis Valdiviana.—This species is interesting, as the coty- [page 25] ledons rise perpendicularly61 upwards at night so as to come into close contact, instead of sinking vertically downwards, as in the case of O. rosea. A glass filament was fixed to a cotyledon, .17 of an inch in length, and the hypocotyl was left free. On
 
Fig. 14. Oxalis rosea: conjoint circumnutation of the cotyledons and hypocotyl, traced from 8.12 A.M. on June 18th to 7.30 A.M. 19th. The apex of the cotyledon stood only 3 3/4 inches from the vertical glass. Figure here given one-half of original scale.
 
Fig. 15. Oxalis Valdiviana: conjoint circumnutation of a cotyledon and the hypocotyl, traced on vertical glass, during 24 hours. Figure here given one-half of original scale; seedling illuminated from above.
 
the first day the seedling was placed too far from the vertical glass; so that the tracing was enormously exaggerated and the movement could not be traced when the cotyledon either rose or sank much; but it was clearly seen that the cotyledons rose thrice and fell twice between 8.15 A.M. and 4.15 P.M. Early on the following morning (June 19th) the apex of a cotyledon was [page 26] placed only 1 7/8 inch from the vertical glass. At 6.40 A.M. it stood horizontally; it then fell till 8.35, and then rose. Altogether in the course of 12 h. it rose thrice and fell thrice, as may be seen in Fig. 15. The great nocturnal rise of the cotyledons usually commences about 4 or 5 P.M., and on the following morning they are expanded or stand horizontally at about 6.30 A.M. In the present instance, however, the great nocturnal rise did not commence till 7 P.M.; but this was due to the hypocotyl having from some unknown cause temporarily bent to the left side, as is shown in the tracing. To ascertain positively62 that the hypocotyl circumnutated, a mark was placed at 8.15 P.M. behind the two now closed and vertical cotyledons; and the movement of a glass filament fixed upright to the top of the hypocotyl was traced until 10.40 P.M. During this time it moved from side to side, as well as backwards and forwards, plainly showing circumnutation; but the movement was small in extent. Therefore Fig. 15 represents fairly well the movements of the cotyledons alone, with the exception of the one great afternoon curvature to the left.
 
Oxalis corniculata (var. cuprea).—The cotyledons rise at night to a variable degree above the horizon, generally about 45o: those on some seedlings between 2 and 5 days old were found to be in continued movement all day long; but the movements were more simple than in the last two species. This may have partly resulted from their not being sufficiently illuminated whilst being observed, as was shown by their not beginning to rise until very late in the evening.
 
Oxalis (Biophytum) sensitiva.—The cotyledons are highly remarkable from the amplitude63 and rapidity of their movements during the day. The angles at which they stood above or beneath the horizon were measured at short intervals of time; and we regret that their course was not traced during the whole day. We will give only a few of the measurements, which were made whilst the seedlings were exposed to a temperature of 22 1/2o to 24 ? decrees C. One cotyledon rose 70o in 11 m.; another, on a distinct seedling, fell 80o in 12 m. Immediately before this latter fall the same cotyledon had risen from a vertically downward to a vertically upward position in 1 h. 48 m., and had therefore passed through 180o in under 2 h. We have met with no other instance of a circumnutating movement of such great amplitude as 180o; nor of such rapidity of movement as the passage through 80o in 12 m. The cotyledons of this plant sleep at night by rising [page 27] vertically and coming into close contact. This upward movement differs from one of the great diurnal oscillations above described only by the position being permanent during the night and by its periodicity, as it always commences late in the evening.
 
Tropaeolum minus (?) (var. Tom Thumb) (Tropaeoleae).—The cotyledons are hypogean, or never rise above the ground. By removing the soil a buried epicotyl or plumule was found, with its summit arched abruptly64 downwards, like the arched hypocotyl of the cabbage previously described. A glass filament with a bead at its end was affixed to the basal half or leg, just above the hypogean cotyledons, which were again almost surrounded by loose earth. The tracing (Fig. 16) shows the course of the bead during 11 h. After the last dot given in the figure, the bead moved to a great distance, and finally off the glass, in the direction indicated by the broken line. This great movement, due to increased growth along the concave surface of the arch, was caused by the basal leg bending backwards from the upper part, that is in a direction opposite to the dependent tip, in the same manner as occurred with the hypocotyl of the cabbage. Another buried and arched epicotyl was observed in the same manner, excepting that the two legs of the arch were tied together with fine silk for the sake of preventing the great movement just mentioned. It moved, however, in the evening in the same direction as before, but the line followed was not so straight. During the morning the tied arch moved in an irregularly circular, strongly zigzag course, and to a greater distance than in the previous case, as was shown in a tracing, magnified 18 times. The movements of a young plant bearing a few leaves and of a mature plant, will hereafter be described.
 
Fig. 16. Tropaeolum minus (?): circumnutation of buried and arched epicotyl, traced on a horizontal glass, from 9.20 A.M. to 8.15 P.M. Movement of bead of filament magnified 27 times. [page 28]
 
Citrus aurantium (Orange) (Aurantiaceae).—The cotyledons are hypogean. The circumnutation of an epicotyl, which at the close of our observations was .59 of an inch (15 mm.) in height above the ground, is shown in the annexed65 figure (Fig. 17), as observed during a period of 44 h. 40 m.
 
Fig. 17. Citrus aurantium: circumnutation of epicotyl with a filament fixed transversely near its apex, traced on a horizontal glass, from 12.13 P.M. on Feb. 20th to 8.55 A.M. on 22nd. The movement of the bead of the filament was at first magnified 21 times, or 10 1/2, in figure here given, and afterwards 36 times, or 18 as here given; seedling illuminated from above.
 
Aesculus hippocastanum (Hippocastaneae).—Germinating66 seeds were placed in a tin box, kept moist internally, with a sloping bank of damp argillaceous sand, on which four smoked glass-plates rested, inclined at angles of 70o and 65o with the horizon. The tips of the radicles were placed so as just to touch the upper end of the glass-plates, and, as they grew downwards they pressed lightly, owing to geotropism, on the smoked surfaces, and left tracks of their course. In the middle part of each track the glass was swept clean, but the margins67 were much blurred68 and irregular. Copies of two of these tracks (all four being nearly alike) were made on tracing paper placed over the glass-plates after they had been varnished69; and they are as exact as possible considering the nature of the margins (Fig. 18). They suffice to show that there was some lateral, almost serpentine70 movement, and that the tips in their downward course pressed with unequal force on the plates, as [page 29] the tracks varied in breadth. The more perfectly71 serpentine tracks made by the radicles of Phaseolus multiflorus and Vicia faba (presently to be described), render it almost certain that the radicles of the present plant circumnutated.
 
Fig. 18. Aesculus hippocastanum: outlines of tracks left on inclined glass-plates by tips of radicles. In A the plate was inclined at 70o with the horizon, and the radicle was 1.9 inch in length, and .23 inch in diameter at base. In B the plate was inclined 65o with the horizon, and the radicle was a trifle larger.
 
Phaseolus multiflorus (Leguminosae).—Four smoked glass-plates were arranged in the same manner as described under Aesculus, and the tracks left by the tips of four radicles of the present plant, whilst growing downwards, were photographed as transparent72 objects. Three of them are here exactly copied (Fig. 19). Their serpentine courses show that the tips moved regularly from side to side; they also pressed alternately with greater or less force on the plates, sometimes rising up and leaving them altogether for a very short distance; but this was better seen on the original plates than in the copies. These radicles therefore were continually moving in all directions—that is, they circumnutated. The distance between the extreme right and left positions of the radicle A, in its lateral movement, was 2 mm., as ascertained73 by measurement with an eye-piece micrometer.
 
Fig. 19. Phaseolus multiflorus: tracks left on inclined smoked glass-plates by tips of radicles in growing downwards. A and C, plates inclined at 60o, B inclined at 68o with the horizon.
 
Vicia faba (Common Bean) (Leguminosae).—Radicle.—Some beans were allowed to germinate on bare sand, and after one had protruded its radicle to a length of .2 of an inch, it was turned upside down, so that the radicle, which was kept in damp air, now stood upright. A filament, nearly an inch in length, was affixed obliquely near its tip; and the movement of the terminal bead was traced from 8.30 A.M. to 10.30 P.M., as shown in Fig. 18. The radicle at first changed its course twice [page 30] abruptly, then made a small loop and then a larger zigzag curve. During the night and till 11 A.M. on the following
 
Fig. 20. Vicia faba: circumnutation of a radicle, at first pointing vertically upwards, kept in darkness, traced on a horizontal glass, during 14 hours. Movement of bead of filament magnified 23 times, here reduced to one-half of original scale.
 
morning, the bead moved to a great distance in a nearly straight line, in the direction indicated by the broken line in the figure. This resulted from the tip bending quickly downwards, as it had now become much declined, and had thus gained a position highly favourable74 for the action of geotropism. Fig. 21. Vicia faba: tracks left on inclined smoked glass-plates, by tips of radicles in growing downwards. Plate C was inclined at 63o, plates A and D at 71o, plate B at 75o, and plate E at a few degrees beneath the horizon. [page 31]
 
We next experimented on nearly a score of radicles by allowing them to grow downwards over inclined plates of smoked glass, in exactly the same manner as with Aesculus and Phaseolus. Some of the plates were inclined only a few degrees beneath the horizon, but most of them between 60o and 75o. In the latter cases the radicles in growing downwards were deflected75 only a little from the direction which they had followed whilst germinating in sawdust, and they pressed lightly on the glass-plates (Fig. 21). Five of the most distinct tracks are here copied, and they are all slightly sinuous76, showing circumnutation. Moreover, a close examination of almost every one of the tracks clearly showed that the tips in their downward course had alternately pressed with greater or less force on the plates, and had sometimes risen up so as nearly to leave them for short intervals. The distance between the extreme right and left positions of the radicle A was 0.7 mm., ascertained in the same manner as in the case of Phaseolus.
 
Epicotyl.—At the point where the radicle had protruded from a bean laid on its side, a flattened77 solid lump projected .1 of an inch, in the same horizontal plane with the bean. This protuberance consisted of the convex summit of the arched epicotyl; and as it became developed the two legs of the arch curved themselves laterally upwards, owing to apogeotropism, at such a rate that the arch stood highly inclined after 14 h., and vertically in 48 h. A filament was fixed to the crown of the protuberance before any arch was visible, but the basal half grew so quickly that on the second morning the end of the filament was bowed greatly downwards. It was therefore removed and fixed lower down. The line traced during these two days extended in the same general direction, and was in parts nearly straight, and in others plainly zigzag, thus giving some evidence of circumnutation.
 
As the arched epicotyl, in whatever position it may be placed, bends quickly upwards through apogeotropism, and as the two legs tend at a very early age to separate from one another, as soon as they are relieved from the pressure of the surrounding earth, it was difficult to ascertain positively whether the epicotyl, whilst remaining arched, circumnutated. Therefore some rather deeply buried beans were uncovered, and the two legs of the arches were tied together, as had been done with the epicotyl of Tropaeolum and the hypocotyl of the Cabbage. The movements of the tied arches were traced in the usual manner on [page 32] two occasions during three days. But the tracings made under such unnatural78 conditions are not worth giving; and it need only be said that the lines were decidedly zigzag, and that small loops were occasionally formed. We may therefore conclude that the epicotyl circumnutates whilst still arched and before it has grown tall enough to break through the surface of the ground.
 
In order to observe the movements of the epicotyl at a somewhat more advanced age, a filament was fixed near the base of one which was no longer arched, for its upper half now formed a right angle with the lower half. This bean had germinated79 on bare damp sand, and the epicotyl began to straighten itself much sooner than would have occurred if it had been properly planted. The course pursued during 50 h. (from 9 A.M. Dec. 26th, to 11 A.M. 28th) is here shown (Fig. 22); and we see Fig. 22. Vicia faba: circumnutation of young epicotyl, traced in darkness during 50 hours on a horizontal glass. Movement of bead of filament magnified 20 times, here reduced to one-half of original scale.
 
that the epicotyl circumnutated during the whole time. Its basal part grew so much during the 50 h. that the filament at the end of our observations was attached at the height of .4 inch above the upper surface of the bean, instead of close to it. If the bean had been properly planted, this part of the epicotyl would still have been beneath the soil.
 
Late in the evening of the 28th, some hours after the above observations were completed, the epicotyl had grown much straighter, for the upper part now formed a widely open angle with the lower part. A filament was fixed to the upright basal part, higher up than before, close beneath the lowest scale-like process or homologue of a leaf; and its movement was traced [page 33] during 38 h. (Fig. 23). We here again have plain evidence of continued circumnutation. Had the bean been properly planted, the part of the epicotyl to which the filament was attached, the
 
Fig. 23. Vicia faba: circumnutation of the same epicotyl as in Fig. 22, a little more advanced in age, traced under similar conditions as before, from 8.40 A.M. Dec. 28th, to 10.50 A.M. 30th. Movement of bead here magnified 20 times.
 
movement of which is here shown, would probably have just risen above the surface of the ground.
 
Lathyrus nissolia (Leguminosae).—This plant was selected for observation from being an abnormal form with grass-like leaves.
 
Fig. 24. Lathyrus nissolia: circumnutation of stem of young seedling, traced in darkness on a horizontal glass, from 6.45 A.M. Nov. 22nd, to 7 A.M. 23rd. Movement of end of leaf magnified about 12 times, here reduced to one-half of original scale.
 
The cotyledons are hypogean, and the epicotyl breaks through the ground in an arched form. The movements of a stem, 1.2 inch in height, consisting of three internodes, the lower one almost wholly subterranean80, and the upper one bearing a short, [page 34] narrow leaf, is shown during 24 h., in Fig. 24. No glass filament was employed, but a mark was placed beneath the apex of the leaf. The actual length of the longer of the two ellipses described by the stem was about .14 of an inch. On the previous day the chief line of movement was nearly at right angles to that shown in the present figure, and it was more simple.
 
Cassia tora* (Leguminosae).—A seedling was placed before a
 
Fig. 25. Cassia tora: conjoint circumnutation of cotyledons and hypocotyl, traced on vertical glass, from 7.10 A.M. Sept. 25th to 7.30 A.M. 26th. Figure here given reduced to one-half of original scale.
 
* Seeds of this plant, which grew near the sea-side, were sent to us by Fritz Müller from S. Brazil. The seedlings did not flourish or flower well with us; they were sent to Kew, and were pronounced not to be distinguishable from C. tora. [page 35]
 
north-east window; it bent very little towards it, as the hypocotyl which was left free was rather old, and therefore not highly heliotropic. A filament had been fixed to the midrib of one of the cotyledons, and the movement of the whole seedling was traced during two days. The circumnutation of the hypocotyl is quite insignificant81 compared with that of the cotyledons. These rise up vertically at night and come into close contact; so that they may be said to sleep. This seedling was so old that a very small true leaf had been developed, which at night was completely hidden by the closed cotyledons. On Sept. 24th, between 8 A.M. and 5 P.M., the cotyledons moved five times up and five times down; they therefore described five irregular ellipses in the course of the 9 h. The great nocturnal rise commenced about 4.30 P.M.
 
On the following morning (Sept. 25th) the movement of the same cotyledon was again traced in the same manner during 24 h.; and a copy of the tracing is here given (Fig. 25). The morning was cold, and the window had been accidentally left open for a short time, which must have chilled the plant; and this probably prevented it from moving quite as freely as on the previous day; for it rose only four and sank only four times during the day, one of the oscillations being very small. At 7.10 A.M., when the first dot was made, the cotyledons were not fully open or awake; they continued to open till about 9 A.M., by which time they had sunk a little beneath the horizon: by 9.30 A.M. they had risen, and then they oscillated up and down; but the upward and downward lines never quite coincided. At about 4.30 P.M. the great nocturnal rise commenced. At 7 A.M. on the following morning (Sept. 26th) they occupied nearly the same level as on the previous morning, as shown in the diagram: they then began to open or sink in the usual manner. The diagram leads to the belief that the great periodical daily rise and fall does not differ essentially82, excepting in amplitude, from the oscillations during the middle of the day.
 
Lotus Jacoboeus (Leguminosae).—The cotyledons of this plant, after the few first days of their life, rise so as to stand almost, though rarely quite, vertically at night. They continue to act in this manner for a long time even after the development of some of the true leaves. With seedlings, 3 inches in height, and bearing five or six leaves, they rose at night about 45o. They continued to act thus for about an additional fortnight. Subsequently they remained horizontal at night, though still green [page 36] and at last dropped off. Their rising at night so as to stand almost vertically appears to depend largely on temperature; for when the seedlings were kept in a cool house, though they still continued to grow, the cotyledons did not become vertical at night. It is remarkable that the cotyledons do not generally rise at night to any conspicuous83 extent during the first four or five days after germination84; but the period was extremely variable with seedlings kept under the same conditions; and many were observed. Glass filaments with minute triangles of paper were fixed to the cotyledons (1 ? mm. in breadth) of two seedlings, only 24 h. old, and the hypocotyl was secured to a stick; their movements greatly magnified were traced, and they certainly circumnutated the whole time on a small scale, but they did not exhibit any distinct nocturnal and diurnal movement. The hypocotyls, when left free, circumnutated over a large space.
 
Another and much older seedling, bearing a half-developed leaf, had its movements traced in a similar manner during the three first days and nights of June; but seedlings at this age appear to be very sensitive to a deficiency of light; they were observed under a rather dim skylight, at a temperature of between 16o to 17 1/2o C.' and apparently85, in consequence of these conditions, the great daily movement of the cotyledons ceased on the third day. During the first two days they began rising in the early afternoon in a nearly straight line, until between 6 and 7 P.M., when they stood vertically. During the latter part of the night, or more probably in the early morning, they began to fall or open, so that by 6.45 A.M. they stood fully expanded and horizontal. They continued to fall slowly for some time, and during the second day described a single small ellipse, between 9 A.M. and 2 P.M., in addition to the great diurnal movement. The course pursued during the whole 24 h. was far less complex than in the foregoing case of Cassia. On the third morning they fell very much, and then circumnutated on a small scale round the same spot; by 8.20 P.M. they showed no tendency to rise at night. Nor did the cotyledons of any of the many other seedlings in the same pot rise; and so it was on the following night of June 5th. The pot was then taken back into the hot-house, where it was exposed to the sun, and on the succeeding night all the cotyledons rose again to a high angle, but did not stand quite vertically. On each of the above days the line representing the great nocturnal [page 37] rise did not coincide with that of the great diurnal fall, so that narrow ellipses were described, as is the usual rule with circumnutating organs. The cotyledons are provided with a pulvinus, and its development will hereafter be described.
 
Mimosa pudica (Leguminosae).—The cotyledons rise up vertically at night, so as to close together. Two seedlings were observed in the greenhouse (temp. 16o to 17o C. or 63o to 65o F.). Their hypocotyls were secured to sticks, and glass filaments bearing little triangles of paper were affixed to the cotyledons of both. Their movements were traced on a vertical glass during 24 h. on November 13th. The pot had stood for some time in the same position, and they were chiefly illuminated through the glass-roof. The cotyledons of one of these seedlings moved downward in the morning till 11.30 A.M., and then rose, moving rapidly in the evening until they stood vertically, so that in this case there was simply a single great daily fall and rise. The other seedling behaved rather differently, for it fell in the morning until 11.30 A.M., and then rose, but after 12.10 P.M. again fell; and the great evening rise did not begin until 1.22 P.M. On the following morning this cotyledon had fallen greatly from its vertical position by 8.15 A.M. Two other seedlings (one seven and the other eight days old) had been previously observed under unfavourable circumstances, for they had been brought into a room and placed before a north-east window, where the temperature was between only 56o and 57o F. They had, moreover, to be protected from lateral light, and perhaps were not sufficiently illuminated. Under these circumstances the cotyledons moved simply downwards from 7 A.M. till 2 P.M., after which hour and during a large part of the night they continued to rise. Between 7 and 8 A.M. on the following morning they fell again; but on this second and likewise on the third day the movements became irregular, and between 3 and 10.30 P.M. they circumnutated to a small extent about the same spot; but they did not rise at night. Nevertheless, on the following night they rose as usual.
 
Cytisus fragrans (Leguminosae).—Only a few observations were made on this plant. The hypocotyl circumnutated to a considerable extent, but in a simple manner—namely, for two hours in one direction, and then much more slowly back again in a zigzag course, almost parallel to the first line, and beyond the starting-point. It moved in the same direction all night, but next morning began to return. The cotyledons continually [page 38] move both up and down and laterally; but they do not rise up at night in a conspicuous manner.
 
Lupinus luteus (Leguminosae).—Seedlings of this plant were observed because the cotyledons are so thick (about .08 of an inch) that it seemed unlikely that they would move. Our observations were not very successful, as the seedlings are strongly heliotropic, and their circumnutation could not be accurately86 observed near a north-east window, although they had been kept during the previous day in the same position. A seedling was then placed in darkness with the hypocotyl secured to a stick; both cotyledons rose a little at first, and then fell during the rest of the day; in the evening between 5 and 6 P.M. they moved very slowly; during the night one continued to fall and the other rose, though only a little. The tracing was not much magnified, and as the lines were plainly zigzag, the cotyledons must have moved a little laterally, that is, they must have circumnutated.
 
The hypocotyl is rather thick, about .12 of inch; nevertheless it circumnutated in a complex course, though to a small extent. The movement of an old seedling with two true leaves partially developed, was observed in the dark. As the movement was magnified about 100 times it is not trustworthy and is not given; but there could be no doubt that the hypocotyl moved in all directions during the day, changing its course 19 times. The extreme actual distance from side to side through which the upper part of the hypocotyl passed in the course of 14 ? hours was only 1/60 of an inch; it sometimes travelled at the rate of 1/50 of an inch in an hour.
 
Cucurbita ovifera (Cucurbitaceae).—Radicle: a seed which had
 
Fig. 26. Cucurbita ovifera: course followed by a radicle in bending geotropically downwards, traced on a horizontal glass, between 11.25 A.M. and 10.25 P.M.; the direction during the night is indicated by the broken line. Movement of bead magnified 14 times.
 
germinated on damp sand was fixed so that the slightly curved radicle, which was only .07 inch in length, stood almost vertically [page 39] upwards, in which position geotropism would act at first with little power. A filament was attached near to its base, and projected at about an angle of 45o above the horizon. The general course followed during the 11 hours of observation and during the following night is shown in the accompanying diagram (Fig. 26), and was plainly due to geotropism; but it was also clear that the radicle circumnutated. By the next morning the tip had curved so much downwards that the filament, instead of projecting at 45o above the horizon, was nearly horizontal. Another germinating seed was turned upside down and covered with damp sand; and a filament was fastened to the radicle so as to project at an angle of about 50o above the horizon; this radicle was .35 of an inch in length and a little curved. The course pursued was mainly governed, as in the last case, by geotropism, but the line traced during 12 hours and magnified as before was more strongly zigzag, again showing circumnutation.
 
Four radicles were allowed to grow downwards over plates of smoked glass, inclined at 70o to the horizon, under the
 
Fig. 27. Cucurbita ovifera: tracks left by tips of radicles in growing downwards over smoked glass-plates, inclined at 70o to the horizon.
 
Fig. 28. Cucurbita ovifera: circumnutation of arched hypocotyl at a very early age, traced in darkness on a horizontal glass, from 8 A.M. to 10.20 A.M. on the following day. The movement of the bead magnified 20 times, here reduced to one-half of original scale.
 
same conditions as in the cases of Aesculus, Phaseolus, and Vicia. Facsimiles are here given (Fig. 27) of two of these tracks; and a third short one was almost as plainly serpentine as that at A. It was also manifest by a greater or less amount of soot87 having been swept off the glasses, that the tips had [page 40] pressed alternately with greater and less force on them. There must, therefore, have been movement in at least two planes at right angles to one another. These radicles were so delicate that they rarely had the power to sweep the glasses quite clean. One of them had developed some lateral or secondary rootlets, which projected a few degrees beneath the horizon; and it is an important fact that three of them left distinctly serpentine tracks on the smoked surface, showing beyond doubt that they had circumnutated like the main or primary radicle. But the tracks were so slight that they could not be traced and copied after the smoked surface had been varnished.
 
Fig. 29. Cucurbita ovifera: circumnutation of straight and vertical hypocotyl, with filament fastened transversely across its upper end, traced in darkness on a horizontal glass, from 8.30 A.M. to 8.30 P.M. The movement of the terminal bead originally magnified about 18 times, here only 4 ? times.
 
Hypocotyl.—A seed lying on damp sand was firmly fixed by two crossed wires and by its own growing radicle. The cotyledons were still enclosed within the seed-coats; and the short hypocotyl, between the summit of the radicle and the cotyledons, was as yet only slightly arched. A filament (.85 of inch in length) was attached at an angle of 35o above the horizon to the side of the arch adjoining the cotyledons. This part would ultimately form the upper end of the hypocotyl, after it had grown straight and vertical. Had the seed been properly planted, the hypocotyl at this stage of growth would have been deeply buried beneath the surface. The course followed by the bead of the filament is shown in Fig. 28. The chief lines of movement from left to right in the figure were parallel to the plane of the two united cotyledons and of the flattened seed; and this movement would aid in dragging them out of the seed-coats, which are held down by a special structure hereafter to be described. The movement at right angles to the above lines was due to the arched hypocotyl becoming more arched as it increased in height. The foregoing observations apply to the leg of the arch next to the cotyledons, but [page 41] the other leg adjoining the radicle likewise circumnutated at an equally early age.
 
The movement of the same hypocotyl after it had become straight and vertical, but with the cotyledons only partially expanded, is shown in Fig. 29. The course pursued during 12 h. apparently represents four and a half ellipses or ovals, with the longer axis88 of the first at nearly right angles to that of the others. The longer axes of all were oblique28 to a line joining the opposite cotyledons. The actual extreme distance from side to side over which the summit of the tall hypocotyl passed in the course of 12 h. was .28 of an inch. The original figure was traced on a large scale, and from the obliquity89 of the line of view the outer parts of the diagram are much exaggerated.
 
Cotyledons.—On two occasions the movements of the cotyledons were traced on a vertical glass, and as the ascending and descending lines did not quite coincide, very narrow ellipses were formed; they therefore circumnutated. Whilst young they rise vertically up at night, but their tips always remain reflexed; on the following morning they sink down again. With a seedling kept in complete darkness they moved in the same manner, for they sank from 8.45 A.M. to 4.30 P.M.; they then began to rise and remained close together until 10 P.M., when they were last observed. At 7 A.M. on the following morning they were as much expanded as at any hour on the previous day. The cotyledons of another young seedling, exposed to the light, were fully open for the first time on a certain day, but were found completely closed at 7 A.M. on the following morning. They soon began to expand again, and continued doing so till about 5 P.M.; they then began to rise, and by 10.30 P.M. stood vertically and were almost closed. At 7 A.M. on the third morning they were nearly vertical, and again expanded during the day; on the fourth morning they were not closed, yet they opened a little in the course of the day and rose a little on the following night. By this time a minute true leaf had become developed. Another seedling, still older, bearing a well-developed leaf, had a sharp rigid90 filament affixed to one of its cotyledons (85 mm. in length), which recorded its own movements on a revolving91 drum with smoked paper. The observations were made in the hot-house, where the plant had lived, so that there was no change in temperature or light. The record commenced at 11 A.M. on February 18th; and from this hour till 3 P.M. the [page 42] cotyledon fell; it then rose rapidly till 9 P.M., then very gradually till 3 A.M. February 19th, after which hour it sank gradually till 4.30 P.M.; but the downward movement was interrupted by one slight rise or oscillation about 1.30 P.M. After 4.30 P.M. (19th) the cotyledon rose till 1 A.M. (in the night of February 20th) and then sank very gradually till 9.30 A.M., when our observations ceased. The amount of movement was greater on the 18th than on the 19th or on the morning of the 20th.
 
Cucurbita aurantia.—An arched hypocotyl was found buried a little beneath the surface of the soil; and in order to prevent it straightening itself quickly, when relieved from the surrounding pressure of the soil, the two legs of the arch were tied together. The seed was then lightly covered with loose damp earth. A filament with a bead at the end was affixed to the basal leg, the movements of which were observed during two days in the usual manner. On the first day the arch moved in a zigzag line towards the side of the basal leg. On the next day, by which time the dependent cotyledons had been dragged above the surface of the soil, the tied arch changed its course greatly nine times in the course of 14 ? h. It swept a large, extremely irregular, circular figure, returning at night to nearly the same spot whence it had started early in the morning. The line was so strongly zigzag that it apparently represented five ellipses, with their longer axes pointing in various directions. With respect to the periodical movements of the cotyledons, those of several young seedlings formed together at 4 P.M. an angle of about 60o, and at 10 P.M. their lower parts stood vertically and were in contact; their tips, however, as is usual in the genus, were permanently92 reflexed. These cotyledons, at 7 A.M. on the following morning, were again well expanded.
 
Lagenaria vulgaris (var. miniature Bottle-gourd) (Cucurbitaceae).—A seedling opened its cotyledons, the movements of which were alone observed, slightly on June 27th and closed them at night: next day, at noon (28th), they included an angle of 53o, and at 10 P.M. they were in close contact, so that each had risen 26 1/2o. At noon, on the 29th, they included an angle of 118o, and at 10 P.M. an angle of 54o, so each had risen 32o. On the following day they were still more open, and the nocturnal rise was greater, but the angles were not measured. Two other seedlings were observed, and behaved during three days in a closely similar manner. The cotyledons, therefore, [page 43] open more and more on each succeeding day, and rise each night about 30o; consequently during the first two nights of their life they stand vertically and come into contact.
 
Fig. 30. Lagenaria vulgaris: circumnutation of a cotyledon, 1 ? inch in length, apex only 4 3/4 inches from the vertical glass, on which its movements were traced from 7.35 A.M. July 11th to 9.5 A.M. on the 14th. Figure here given reduced to one-third of original scale.
 
In order to ascertain more accurately the nature of these movements, the hypocotyl of a seedling, with its cotyledons well expanded, was secured to a little stick, and a filament with triangles of paper was affixed to one of the cotyledons. The observations were made under a rather dim skylight, and the temperature during the whole time was between 17 1/2o to 18o C. (63o to 65o F.). Had the temperature been higher and the light brighter, the movements would probably have been greater. On July 11th (see Fig. 30), the cotyledon fell from 7.35 A.M. till 10 A.M.; it then rose (rapidly after 4 P.M.) till it stood quite vertically at 8.40 P.M. During the early morning of the next day (12th) it fell, and continued to fall till 8 A.M., after which hour it rose, then fell, and again rose, so that by 10.35 P.M. it stood much higher than it did in the morning, but was not vertical as on the preceding night. During the following early morning and whole day (13th) it fell and circumnutated, but had not risen when observed late in the evening; and this was probably due to the deficiency of heat or light, or of both. We thus see that the cotyledons became more widely open at noon on each succeeding day; and that they rose considerably each night, though not acquiring a vertical position, except during the first two nights.
 
Cucumis dudaim (Cucurbitaceae).—Two seedlings had opened [page 44] their cotyledons for the first time during the day,—one to the extent of 90o and the other rather more; they remained in nearly the same position until 10.40 P.M.; but by 7 A.M. on the following morning the one which had been previously open to the extent of 90o had its cotyledons vertical and completely shut; the other seedling had them nearly shut. Later in the morning they opened in the ordinary manner. It appears therefore that the cotyledons of this plant close and open at somewhat different periods from those of the foregoing species of the allied93 genera of Cucurbita and Lagenaria.
 
Fig. 31. Opuntia basilaris: conjoint circumnutation of hypocotyl and cotyledon; filament fixed longitudinally to cotyledon, and movement traced during 66 h. on horizontal glass. Movement of the terminal bead magnified about 30 times, here reduced to one-third scale. Seedling kept in hot-house, feebly illuminated from above.
 
Opuntia basilaris (Cacteae).—A seedling was carefully observed, because, considering its appearance and the nature of the mature plant, it seemed very unlikely that either the hypocotyl or cotyledons would circumnutate to an appreciable94 extent. The cotyledons were well developed, being .9 of an inch in length, .22 in breadth, and .15 in thickness. The almost cylindrical95 hypocotyl, now bearing a minute spinous bud on its summit, was only .45 of an inch in height, and .19 in diameter. The tracing (Fig. 31) shows the combined movement of the hypocotyl and of one of the cotyledons, from 4.45 P.M. on May 28th to 11 A.M. on the 31st. On the 29th a nearly perfect ellipse was completed. On the 30th the hypocotyl moved, from some unknown cause, in the same general direction in a zigzag line; but between 4.30 and 10 P.M. almost completed a second small ellipse. The cotyledons move only a little up and down: thus at 10.15 P.M. they stood only 10o higher than at noon. The chief seat of movement therefore, at least when the cotyledons are rather old as in the present case, lies in the hypocotyl. The ellipse described on the 29th had its longer axis directed at nearly right angles to a line joining the two cotyledons. The actual amount of movement of the bead at the end of the [page 45] filament was, as far as could be ascertained, about .14 of an inch.
 
Fig. 32. Helianthus annuus: circumnutation of hypocotyl, with filament fixed across its summit, traced on a horizontal glass in darkness, from 8.45 A.M. to 10.45 P.M., and for an hour on following morning. Movement of bead magnified 21 times, here reduced to one-half of original scale.
 
Helianthus annuus (Compositae).—The upper part of the hypocotyl moved during the day-time in the course shown in the annexed figure (Fig. 32). As the line runs in various directions, crossing itself several times, the movement may be considered as one of circumnutation. The extreme actual distance travelled was at least .1 of an inch. The movements of the cotyledons of two seedlings were observed; one facing a north-east window, and the other so feebly illuminated from above us as to be almost in darkness. They continued to sink till about noon, when they began to rise; but between 5 and 7 or 8 P.M. they either sank a little, or moved laterally, and then again began to rise. At 7 A.M. on the following morning those on the plant before the north-east window had opened so little that they stood at an angle of 73o above the horizon, and were not observed any longer. Those on the seedling which had been kept in almost complete darkness, sank during the whole day, without rising about mid-day, but rose during the night. On the third and fourth days they continued sinking without any alternate ascending movement; and this, no doubt, was due to the absence of light.
 
Primula Sinensis (Primulaceae).—A seedling was placed with the two cotyledons parallel to a north-east window on a day when the light was nearly uniform, and a filament was affixed to one of them. From observations subsequently made on another seedling with the stem secured to a stick, the greater part of the movement shown in the annexed figure (Fig. 33), must have been that of the hypocotyl, though the cotyledons certainly move up and down to a certain extent both during the day and night. The movements of the same seedling were traced [page 46] on the following day with nearly the same result; and there can be no doubt about the circumnutation of the hypocotyl.
 
Fig. 33. Primula Sinensis: conjoint circumnutation of hypocotyl and cotyledon, traced on vertical glass, from 8.40 A.M. to 10.45 P.M. Movements of bead magnified about 26 times.
 
Cyclamen Persicum (Primulaceae).—This plant is generally supposed to produce only a single cotyledon, but Dr. H. Gressner* has shown that a second one is developed after a long interval of time. The hypocotyl is converted into a globular corm, even before the first cotyledon has broken through the ground with its blade closely enfolded and with its petiole in the form of an arch, like the arched hypocotyl or epicotyl of any ordinary dicotyledonous plant. A glass filament was affixed to a cotyledon, .55 of an inch in height, the petiole of which had straightened itself and stood nearly vertical, but with the blade not as yet fully expanded. Its movements were traced during 24 ? h. on a horizontal glass, magnified 50 times; and in this interval it described two irregular small circles; it therefore circumnutates, though on an extremely small scale.
 
Fig. 34. Stapelia sarpedon: circumnutation of hypocotyl, illuminated from above, traced on horizontal glass, from 6.45 A.M. June 26th to 8.45 A.M. 28th. Temp. 23-24o C. Movement of bead magnified 21 times.
 
Stapelia sarpedon (Asclepiadeae).—This plant, when mature, resembles a cactus96. The flattened hypocotyl is fleshy, enlarged in the upper part, and bears two rudimentary cotyledons. It breaks through the ground in an arched form, with the rudimentary cotyledons closed or in contact. A filament was affixed almost
 
* 'Bot. Zeitung,' 1874, p. 837. [page 47]
 
vertically to the hypocotyl of a seedling half an inch high; and its movements were traced during 50 h. on a horizontal glass (Fig. 34). From some unknown cause it bowed itself to one side, and as this was effected by a zigzag course, it probably circumnutated; but with hardly any other seedling observed by us was this movement so obscurely shown.
 
Ipomoea caerulea vel Pharbitis nil97 (Convolvulaceae).—Seedlings of this plant were observed because it is a twiner99, the upper internodes of which circumnutate conspicuously100; but like other twining plants, the first few internodes which rise above the ground are stiff enough to support themselves, and therefore do not circumnutate in any plainly recognisable manner.* In this particular instance the fifth internode (including the hypocotyl) was the first which plainly circumnutated and twined round a stick. We therefore wished to learn whether circumnutation could be observed in the hypocotyl if carefully observed in our usual manner. Two seedlings were kept in the dark with filaments fixed to the upper part of their hypocotyls; but from circumstances not worth explaining their movements were traced for only a short time. One moved thrice forwards and twice backwards in nearly opposite directions, in the course of 3 h. 15 m.; and the other twice forwards and twice backwards in 2 h. 22 m. The hypocotyl therefore circumnutated at a remarkably101 rapid rate. It may here be added that a filament was affixed transversely to the summit of the second internode above the cotyledons of a little plant 3 ? inches in height; and its movements were traced on a horizontal glass. It circumnutated, and the actual distance travelled from side to side was a quarter of an inch, which was too small an amount to be perceived without the aid of marks.
 
The movements of the cotyledons are interesting from their complexity102 and rapidity, and in some other respects. The hypocotyl (2 inches high) of a vigorous seedling was secured to a stick, and a filament with triangles of paper was affixed to one of the cotyledons. The plant was kept all day in the hot-house, and at 4.20 P.M. (June 20th) was placed under a skylight in the house, and observed occasionally during the evening and night. It fell in a slightly zigzag line to a moderate extent from 4.20 P.M. till 10.15 P.M. When looked at shortly after midnight (12.30 P.M.) it had risen a very little, and considerably by
 
* 'Movements and Habits of Climbing Plants,' p. 33, 1875. [page 48]
 
3.45 A.M. When again looked at, at 6.10 A.M. (21st), it had fallen largely. A new tracing was now begun (see Fig. 35), and soon afterwards, at 6.42 A.M., the cotyledon had risen a little. During the forenoon it was observed about every hour; but between 12.30 and 6 P.M. every half-hour. If the observations had been made at these short intervals during the whole day, the figure would have been too intricate to have been copied. As it was, the cotyledon moved up and down in the course of 16 h. 20 m. (i.e. between 6.10 A.M. and 10.30 P.M.) thirteen times.
 
Fig 35. Ipomoea caerulea: circumnutation of cotyledon, traced on vertical glass, from 6.10 A.M. June 21st to 6.45 A.M. 22nd. Cotyledon with petiole 1.6 inch in length, apex of blade 4.1 inch from the vertical glass; so movement not greatly magnified; temp. 20o C.
 
The cotyledons of this seedling sank downwards during both evenings and the early part of the night, but rose during the latter part. As this is an unusual movement, the cotyledons of twelve other seedlings were observed; they stood almost or quite horizontally at mid-day, and at 10 P.M. were all declined at various angles. The most usual angle was between 30o and 35o; but three stood at about 50o and one at even 70o beneath the horizon. The blades of all these cotyledons had attained103 almost their full size, viz. from 1 to 1 ? inches in length, measured along their midribs. It is a remarkable fact that whilst young—that is, when less than half an inch in length, measured in the same manner—they do not sink [page 49] downwards in the evening. Therefore their weight, which is considerable when almost fully developed, probably came into play in originally determining the downward movement. The periodicity of this movement is much influenced by the degree of light to which the seedlings have been exposed during the day; for three kept in an obscure place began to sink about noon, instead of late in the evening; and those of another seedling were almost paralysed by having been similarly kept during two whole days. The cotyledons of several other species of Ipomoea likewise sink downwards late in the evening.
 
Cerinthe major (Boragineae).—The circumnutation of the hypocotyl of a young seedling with the cotyledons hardly
 
Fig. 36. Cerinthe major: circumnutation of hypocotyl, with filament fixed across its summit, illuminated from above, traced on horizontal glass, from 9.26 A.M. to 9.53 P.M. on Oct. 25th. Movement of the bead magnified 30 times, here reduced to one-third of original scale.
 
expanded, is shown in the annexed figure (Fig. 36), which apparently represents four or five irregular ellipses, described in the course of a little over 12 hours. Two older seedlings were similarly observed, excepting that one of them was kept in the dark; their hypocotyls also circumnutated, but in a more simple manner. The cotyledons on a seedling exposed to the light fell from the early morning until a little after noon, and then continued to rise until 10.30 P.M. or later. The cotyledons of this same seedling acted in the same general manner during the two following days. It had previously been tried in the dark, and after being thus kept for only 1 h. 40 m. the cotyledons began at 4.30 P.M. to sink, instead of continuing to rise till late at night. [page 50]
 
Nolana prostrata (Nolaneae).—The movements were not traced, but a pot with seedlings, which had been kept in the dark for an hour, was placed under the microscope, with the micrometer eye-piece so adjusted that each division equalled 1/500th of an inch. The apex of one of the cotyledons crossed rather obliquely four divisions in 13 minutes; it was also sinking, as shown by getting out of focus. The seedlings were again placed in darkness for another hour, and the apex now crossed two divisions in 6 m. 18 s.; that is, at very nearly the same rate as before. After another interval of an hour in darkness, it crossed two divisions in 4 m. 15 s., therefore at a quicker rate. In the afternoon, after a longer interval in the dark, the apex was motionless, but after a time it recommenced moving, though slowly; perhaps the room was too cold. Judging from previous cases, there can hardly be a doubt that this seedling was circumnutating.
 
Fig. 37. Solanum lycopersicum: circumnutation of hypocotyl, with filament fixed across its summit, traced on horizontal glass, from 10 A.M. to 5 P.M. Oct. 24th. Illuminated obliquely from above. Movement of bead magnified about 35 times, here reduced to one-third of original scale.
 
Solanum lycopersicum (Solaneae).—The movements of the hypocotyls of two seedling tomatoes were observed during seven hours, and there could be no doubt that both circumnutated. They were illuminated from above, but by an accident a little light entered on one side, and in the accompanying figure (Fig. 37) it may be seen that the hypocotyl moved to this side (the upper one in the figure), making small loops and zigzagging104 in its course. The movements of the cotyledons were also traced both on vertical and horizontal glasses; their angles with the horizon were likewise measured at various hours. They fell from 8.30 A.M. (October 17th) to about noon; then moved laterally in a zigzag line, and at about 4 P.M. began to rise; they continued to do so until 10.30 P.M., by which hour they stood vertically and were asleep. At what hour of the night or early morning they began to fall was not ascertained. Owing to the lateral movement shortly after mid-day, the descending and ascending lines did not coincide, and irregular ellipses were described during each 24 h. The regular periodicity of these movements is destroyed, as we shall hereafter see, if the seedlings are kept in the dark. [page 51]
 
Solanum palinacanthum.—Several arched hypocotyls rising nearly .2 of an inch above the ground, but with the cotyledons still buried beneath the surface, were observed, and the tracings showed that they circumnutated. Moreover, in several cases little open circular spaces or cracks in the argillaceous sand which surrounded the arched hypocotyls were visible, and these appeared to have been made by the hypocotyls having bent first to one and then to another side whilst growing upwards. In two instances the vertical arches were observed to move to a considerable distance backwards from the point where the cotyledons lay buried; this movement, which has been noticed in some other cases, and which seems to aid in extracting the cotyledons from the buried seed-coats, is due to the commencement of the straightening of the hypocotyl. In order to prevent this latter movement, the two legs of an arch, the
 
Fig. 38. Solanum palinacanthum: circumnutation of an arched hypocotyl, just emerging from the ground, with the two legs tied together, traced in darkness on a horizontal glass, from 9.20 A.M. Dec. 17th to 8.30 A.M. 19th. Movement of bead magnified 13 times; but the filament, which was affixed obliquely to the crown of the arch, was of unusual length.
 
summit of which was on a level with the surface of the soil, were tied together; the earth having been previously removed to a little depth all round. The movement of the arch during 47 hours under these unnatural circumstances is exhibited in the annexed figure.
 
The cotyledons of some seedlings in the hot-house were horizontal about noon on December 13th; and at 10 P.M. had risen to an angle of 27o above the horizon; at 7 A.M. on the following [page 52] morning, before it was light, they had risen to 59o above the horizon; in the afternoon of the same day they were found again horizontal.
 
Beta vulgaris (Chenopodeae).—The seedlings are excessively sensitive to light, so that although on the first day they were uncovered only during two or three minutes at each observation, they all moved steadily105 towards the side of the room whence the light proceeded, and the tracings consisted only of slightly zigzag lines directed towards the light. On the next day the plants were placed in a completely darkened room, and at each observation were illuminated as much as possible from vertically above by a small wax taper. The annexed figure (Fig. 39) shows the movement of the hypocotyl during 9 h. under these circumstances. A second seedling was similarly observed at the same time, and the tracing had the same peculiar106 character, due to the hypocotyl often moving and returning in nearly parallel lines. The movement of a third hypocotyl differed greatly.
 
Fig. 39. Beta vulgaris: circumnutation of hypocotyl, with filament fixed obliquely across its summit, traced in darkness on horizontal glass, from 8.25 A.M. to 5.30 P.M. Nov. 4th. Movement of bead magnified 23 times, here reduced to one-third of original scale.
 
We endeavoured to trace the movements of the cotyledons, and for this purpose some seedlings were kept in the dark, but they moved in an abnormal manner; they continued rising from 8.45 A.M. to 2 P.M., then moved laterally, and from 3 to 6 P.M. descended107; whereas cotyledons which have been exposed all the day to the light rise in the evening so as to stand vertically at night; but this statement applies only to young seedlings. For instance, six seedlings in the greenhouse had their cotyledons partially open for the first time on the morning of November 15th, and at 8.45 P.M. all were completely closed, so that they might properly be said to be asleep. Again, on the morning of November 27th, the cotyledons of four other seedlings, which were surrounded by a collar of brown paper so that they received light only from above, were open to the extent of 39o; at 10 P.M. they were completely closed; next morning (November 28th) at 6.45 A.M. whilst it was still dark, two of them [page 53] were partially open and all opened in the course of the morning; but at 10.20 P.M. all four (not to mention nine others which had been open in the morning and six others on another occasion) were again completely closed. On the morning of the 29th they were open, but at night only one of the four was closed, and this only partially; the three others had their cotyledons much more raised than during the day. On the night of the 30th the cotyledons of the four were only slightly raised.
 
Ricinus Borboniensis (Euphorbiaceae).—Seeds were purchased under the above name—probably a variety of the common castor-oil plant. As soon as an arched hypocotyl had risen clear above the ground, a filament was attached to the upper leg bearing the cotyledons which were still buried beneath the surface, and the movement of the bead was traced on a horizontal glass during a period of 34 h. The lines traced were strongly zigzag, and as the bead twice returned nearly parallel to its former course in two different directions, there could be no doubt that the arched hypocotyl circumnutated. At the close of the 34 h. the upper part began to rise and straighten itself, dragging the cotyledons out of the ground, so that the movements of the bead could no longer be traced on the glass.
 
Quercus (American sp.) (Cupuliferae).—Acorns108 of an American oak which had germinated at Kew were planted in a pot in the greenhouse. This transplantation checked their growth; but after a time one grew to a height of five inches, measured to the tips of the small partially unfolded leaves on the summit, and now looked vigorous. It consisted of six very thin internodes of unequal lengths. Considering these circumstances and the nature of the plant, we hardly expected that it would circumnutate; but the annexed figure (Fig. 40) shows that it did so in a conspicuous manner, changing its course many times and travelling in all directions during the 48 h. of observation. The figure seems to represent 5 or 6 irregular ovals or ellipses. The actual amount of movement from side to side (excluding one great bend to the left) was about .2 of an inch; but this was difficult to estimate, as owing to the rapid growth of the stem, the attached filament was much further from the mark beneath at the close than at the commencement of the observations. It deserves notice that the pot was placed in a north-east room within a deep box, the top of which was not at first covered up, so that the inside facing [page 54] the windows was a little more illuminated than the opposite side; and during the first morning the stem travelled to a greater distance in this direction (to the left in the figure) than it did afterwards when the box was completely protected from light.
 
Fig. 40. Quercus (American sp.): circumnutation of young stem, traced on horizontal glass, from 12.50 P.M. Feb. 22nd to 12.50 P.M. 24th. Movement of bead greatly magnified at first, but slightly towards the close of the observations—about 10 times on an average.
 
Quercus robur.—Observations were made only on the movements of the radicles from germinating acorns, which were allowed to grow downwards in the manner previously described, over plates of smoked glass, inclined at angles between 65o and 69o to the horizon. In four cases the tracks left were almost straight, but the tips had pressed sometimes with more and sometimes with less force on the glass, as shown by the varying thickness of the tracks and by little bridges of soot left across them. In the fifth case the track was slightly serpentine, that is, the tip had moved a little from side to side. In the sixth case (Fig. 41, A) it was plainly serpentine, and the tip had pressed almost equably on the glass in its whole course. In the seventh case (B) the tip had moved both laterally and had pressed [page 55] alternately with unequal force on the glass; so that it had moved a little in two planes at right angles to one another. In the eighth and last case (C) it had moved very little laterally, but had alternately left the glass and come into contact with it again. There can be no doubt that in the last four cases the radicle of the oak circumnutated whilst growing downwards.
 
Fig. 41. Quercus robur: tracks left on inclined smoked glass-plates by tips of radicles in growing downwards. Plates A and C inclined at 65o and plate B at 68o to the horizon.
 
Corylus avellana (Corylaceae).—The epicotyl breaks through the ground in an arched form; but in the specimen109 which was first examined, the apex had become decayed, and the epicotyl grew to some distance through the soil, in a tortuous110, almost horizontal direction, like a root. In consequence of this injury it had emitted near the hypogean cotyledons two secondary shoots, and it was remarkable that both of these were arched, like the normal epicotyl in ordinary cases. The soil was removed from around one of these arched secondary shoots, and a glass filament was affixed to the basal leg. The whole was kept damp beneath a metal-box with a glass lid, and was thus illuminated only from above. Owing apparently to the lateral pressure of the earth being removed, the terminal and bowed-down part of the shoot began at once to move upwards, so that after 24 h. it formed a right angle with the lower part. This lower part, to which the filament was attached, also straightened itself, and moved a little backwards from the upper part. Consequently a long line was traced on the horizontal glass; and [page 56] this was in parts straight and in parts decidedly zigzag, indicating circumnutation.
 
On the following day the other secondary shoot was observed; it was a little more advanced in age, for the upper part, instead of depending vertically downwards, stood at an angle of 45o above the horizon. The tip of the shoot projected obliquely .4 of an inch above the ground, but by the close of our observations, which lasted 47 h., it had grown, chiefly towards its base, to a height of .85 of an inch. The filament was fixed transversely to the basal and almost upright half of the shoot, close beneath the lowest scale-like appendage111. The circumnutating course pursued is shown in the accompanying figure (Fig. 42). The actual distance traversed from side to side was about .04 of an inch.
 
Fig. 42. Corylus avellana: circumnutation of a young shoot emitted from the epicotyl, the apex of which had been injured, traced on a horizontal glass, from 9 A.M. Feb. 2nd to 8 A.M. 4th. Movement of bead magnified about 27 times.
 
Pinus pinaster (Coniferae).—A young hypocotyl, with the tips of the cotyledons still enclosed within the seed-coats, was at first only .35 of an inch in height; but the upper part grew so rapidly that at the end of our observations it was .6 in height,
 
Fig. 43. Pinus pinaster: circumnutation of hypocotyl, with filament fixed across its summit, traced on horizontal glass, from 10 A.M. March 21st to 9 A.M. 23rd. Seedling kept in darkness. Movement of bead magnified about 35 times. [page 57]
 
and by this time the filament was attached some way down the little stem. From some unknown cause, the hypocotyl moved far towards the left, but there could be no doubt (Fig. 43) that it circumnutated. Another hypocotyl was similarly observed, and it likewise moved in a strongly zigzag line to the same side. This lateral movement was not caused by the attachment112 of the glass filaments, nor by the action of light; for no light was allowed to enter when each observation was made, except from vertically above.
 
The hypocotyl of a seedling was secured to a little stick; it bore nine in appearance distinct cotyledons, arranged in a circle. The movements of two nearly opposite ones were observed. The tip of one was painted white, with a mark placed below, and the figure described (Fig. 44, A) shows that it made an irregular
 
Fig. 44. Pinus pinaster: circumnutation of two opposite cotyledons, traced on horizontal glass in darkness, from 8.45 A.M. to 8.35 P.M. Nov. 25th. Movement of tip in A magnified about 22 times, here reduced to one-half of original scale.
 
circle in the course of about 8 h. during the night it travelled to a considerable distance in the direction indicated by the broken line. A glass filament was attached longitudinally to the other cotyledon, and this nearly completed (Fig, 44, B) an irregular circular figure in about 12 hours. During the night it also moved to a considerable distance, in the direction indicated by the broken line. The cotyledons therefore circumnutate independently of the movement of the hypocotyl. Although they moved much during the night, they did not approach each other so as to stand more vertically than during the day. [page 58]
 
Cycas pectinata (Cycadeae).—The large seeds of this plant in germinating first protrude16 a single leaf, which breaks through the ground with the petiole bowed into an arch and with the leaflets involuted. A leaf in this condition, which at the close of our observations was 2 ? inches in height, had its movements traced in a warm greenhouse by means of a glass filament bearing paper triangles attached across its tip. The tracing (Fig. 45) shows how large, complex, and rapid were the circum-
 
Fig. 45. Cycas pectinata: circumnutation of young leaf whilst emerging from the ground, feebly illuminated from above, traced on vertical glass, from 5 P.M. May 28th to 11 A.M. 31st. Movement magnified 7 times, here reduced to two-thirds of original scale.
 
nutating movements. The extreme distance from side to side which it passed over amounted to between .6 and .7 of an inch.
 
Canna Warscewiczii (Cannaceae).—A seedling with the plumule projecting one inch above the ground was observed, but not under fair conditions, as it was brought out of the hot-house and kept in a room not sufficiently warm. Nevertheless the tracing (Fig. 46) shows that it made two or three incomplete irregular circles or ellipses in the course of 48 hours. The plumule is straight; and this was the first instance observed [page 59] by us of the part that first breaks through the ground not being arched.
 
Fig. 46. Canna Warscewiczii: circumnutation of plumule with filament affixed obliquely to outer sheath-like leaf, traced in darkness on horizontal glass from 8.45 A.M. Nov. 9th to 8.10 A.M. 11th. Movement of bead magnified 6 times.
 
Allium cepa (Liliaceae).—The narrow green leaf, which protrudes from the seed of the common onion as a cotyledon,* breaks through the ground in the form of an arch, in the same manner as the hypocotyl or epicotyl of a dicotyledonous plant. Long after the arch has risen above the surface the apex remains113 within the seed-coats, evidently absorbing the still abundant contents. The summit or crown of the arch, when it first protrudes from the seed and is still buried beneath the ground, is simply rounded; but before it reaches the surface it is developed into a conical protuberance of a white colour (owing to the absence of chlorophyll), whilst the adjoining parts are green, with the epidermis114 apparently rather thicker and tougher than elsewhere. We may therefore conclude that this conical protuberance is a special adaptation for breaking through the ground,** and answers the same end as the knife-like white crest115 on the summit of the straight cotyledon of the Gramineae.
 
* This is the expression used by Sachs in his 'Text-book of Botany.'
 
** Haberlandt has briefly116 described ('Die Schutzeinrichtungen...Keimpflanze,' 1877, p. 77) this curious structure and the purpose which it subserves. He states that good figures of the cotyledon of the onion have been given by Tittmann and by Sachs in his 'Experimental Physiologie,' p. 93. [page 60]
 
After a time the apex is drawn117 out of the empty seed-coats, and rises up, forming a right angle, or more commonly a still larger angle with the lower part, and occasionally the whole becomes nearly straight. The conical protuberance, which originally formed the crown of the arch, is now seated on one side, and appears like a joint41 or knee, which from acquiring chlorophyll becomes green, and increases in size. In rarely or never becoming perfectly straight, these cotyledons differ remarkably from the ultimate condition of the arched hypocotyls or epicotyls of dicotyledons. It is, also, a singular circumstance that the attenuated118 extremity119 of the upper bent portion invariably withers121 and dies.
 
A filament, 1.7 inch in length, was affixed nearly upright beneath the knee to the basal and vertical portion of a cotyledon; and its movements were traced during 14 h. in the usual manner. The tracing here given (Fig. 47) indicates circumnutation. The movement of the upper part above the knee of the same cotyledon, which projected at about an angle of 45o above the horizon, was observed at the same time. A filament was not affixed to it, but a mark was placed beneath the apex, which was almost white from beginning to wither120, and its movements were thus traced. The figure described resembled pretty closely that above given; and this shows that the chief seat of movement is in the lower or basal part of the cotyledon.
 
Fig. 47. Allium cepa: circumnutation of basal half of arched cotyledon, traced in darkness on horizontal glass, from 8.15 A.M. to 10 P.M. Oct. 31st. Movement of bead magnified about 17 times.
 
Asparagus officinalis (Asparageae).—The tip of a straight plumule or cotyledon (for we do not know which it should be called) was found at a depth of .1 inch beneath the surface, and the earth was then removed all round to the dept of .3 inch. a glass filament was affixed obliquely to it, and the movement of the bead, magnified 17 times, was traced in darkness. During the first 1 h. 15 m. the plumule moved to the right, and during the next two hours it returned in a roughly parallel but strongly zigzag course. From some unknown cause it had grown up through the soil in an inclined direction, and now through apogeotropism it moved during nearly 24 h. in [page 61] the same general direction, but in a slightly zigzag manner, until it became upright. On the following morning it changed its course completely. There can therefore hardly be a doubt that the plumule circumnutates, whilst buried beneath the ground, as much as the pressure of the surrounding earth will permit. The surface of the soil in the pot was now covered with a thin layer of very fine argillaceous sand, which was kept damp; and after the tapering122 seedlings had grown a few tenths of an inch in height, each was found surrounded by a little open space or circular crack; and this could be accounted for only by their having circumnutated and thus pushed away the sand on all sides; for there was no vestige123 of a crack in any other part.
 
In order to prove that there was circumnutation, the move-
 
Fig. 48. Asparagus officinalis: circumnutation of plumules with tips whitened and marks placed beneath, traced on a horizontal glass. A, young plumule; movement traced from 8.30 A.M. Nov. 30th to 7.15 A.M. next morning; magnified about 35 times. B, older plumule; movement traced from 10.15 A.M. to 8.10 P.M. Nov. 29th; magnified 9 times, but here reduced to one-half of original scale.
 
ments of five seedlings, varying in height from .3 inch to 2 inches, were traced. They were placed within a box and illuminated from above; but in all five cases the longer axes of the figures described were directed to nearly the same point; so that more light seemed to have come through the glass roof of the greenhouse on one side than on any other. All five tracings resembled each other to a certain extent, and it will suffice to give two of them. In A (Fig. 48) the seedling was only .45 of an [page 62] inch in height, and consisted of a single internode bearing a bud on its summit. The apex described between 8.30 A.M. and 10.20 P.M. (i.e. during nearly 14 hours) a figure which would probably have consisted of 3 ? ellipses, had not the stem been drawn to one side until 1 P.M., after which hour it moved backwards. On the following morning it was not far distant from the point whence it had first started. The actual amount of movement of the apex from side to side was very small, viz. about 1/18th of an inch. The seedling of which the movements are shown in Fig. 48, B, was 1 3/4 inch in height, and consisted of three internodes besides the bud on the summit. The figure, which was described during 10 h., apparently represents two irregular and unequal ellipses or circles. The actual amount of movement of the apex, in the line not influenced by the light, was .11 of an inch, and in that thus influenced .37 of an inch. With a seedling 2 inches in height it was obvious, even without the aid of any tracing, that the uppermost part of the stem bent successively to all points of the compass, like the stem of a twining plant. A little increase in the power of circumnutating and in the flexibility124 of the stem, would convert the common asparagus into a twining plant, as has occurred with one species in this genus, namely, A. scandens.
 
Phalaris Canariensis (Gramineae).—With the Gramineae the part which first rises above the ground has been called by some authors the pileole; and various views have been expressed on its homological nature. It is considered by some great authorities to be a cotyledon, which term we will use without venturing to express any opinion on the subject.* It consists in the present case of a slightly flattened reddish sheath, terminating upwards in a sharp white edge; it encloses a true green leaf, which protrudes from the sheath through a slit-like orifice, close beneath and at right angles to the sharp edge on the summit. The sheath is not arched when it breaks through the ground.
 
The movements of three rather old seedlings, about 1 ? inch in height, shortly before the protrusion125 of the leaves, were first traced. They were illuminated exclusively from above; for, as will hereafter be shown, they are excessively sensitive to the * We are indebted to the Rev23. G. Henslow for an abstract of the views which have been held on this subject, together with references. [page 63]
 
action of light; and if any enters even temporarily on one side, they merely bend to this side in slightly zigzag lines. Of the three tracings one alone (Fig. 49) is here given. Had the observations been more frequent during the 12 h. two oval figures would have been described with their longer axes at right angles to one another. The actual amount of movement of the apex from side to side was about .3 of an inch. The figures described by the other two seedlings resembled to a certain extent the one here given.
 
Fig. 49. Phalaris Canariensis: circumnutation of a cotyledon, with a mark placed below the apex, traced on a horizontal glass, from 8.35 A.M. Nov. 26th to 8.45 A.M. 27th. Movement of apex magnified 7 times, here reduced to one-half scale.
 
A seedling which had just broken through the ground and projected only 1/20th of an inch above the surface, was next observed in the same manner as before. It was necessary to clear away the earth all round the seedling to a little depth in order to place a mark beneath the apex. The figure (Fig. 50) shows that the apex moved to one side, but changed its course ten times in the course of the ten hours of observation; so that there can be no doubt about its circumnutation. The cause of the general movement in one direction could hardly be attributed to the entrance of lateral light, as this was carefully guarded against; and we suppose it was in some manner connected with the removal of the earth round the little seedling.
 
Fig. 50. Phalaris Canariensis: circumnutation of a very young cotyledon, with a mark placed below the apex, traced on a horizontal glass, from 11.37 A.M. to 9.30 P.M. Dec. 13th. Movement of apex greatly magnified, here reduced to one-fourth of original scale.
 
Lastly, the soil in the same pot was searched with the aid of a lens, and the white knife-like apex of a seedling was found on an exact level with that of the surrounding surface. The soil was removed all round the apex to the depth of a quarter of an inch, the seed itself remaining covered. The pot, protected from lateral light, was placed under the micro- [page 64] scope with a micrometer eye-piece, so arranged that each division equalled 1/500th of an inch. After an interval of 30 m. the apex was observed, and it was seen to cross a little obliquely two divisions of the micrometer in 9 m. 15 s.; and after a few minutes it crossed the same space in 8 m. 50s. The seedling was again observed after an interval of three-quarters of an hour, and now the apex crossed rather obliquely two divisions in 10 m. We may therefore conclude that it was travelling at about the rate of 1/50th of an inch in 45 minutes. We may also conclude from these and the previous observations, that the seedlings of Phalaris in breaking through the surface of the soil circumnutate as much as the surrounding pressure will permit. This fact accounts (as in the case before given of the asparagus) for a circular, narrow, open space or crack being distinctly visible round several seedlings which had risen through very fine argillaceous sand, kept uniformly damp.
 
Fig. 51. Zea mays: circumnutation of cotyledon, traced on horizontal glass, from 8.30 A.M. Feb. 4th to 8 A.M. 6th. Movement of bead magnified on an average about 25 times.
 
Zea mays (Gramineae).—A glass filament was fixed obliquely to the summit of a cotyledon, rising .2 of an inch above the ground; but by the third morning it had grown to exactly thrice this height, so that the distance of the bead from the mark below was greatly increased, consequently the tracing (Fig. 51) was much more magnified on the first than on the second day. The upper part of the cotyledon changed its course by at least as much as a rectangle six times on each of the two days. The plant was illuminated by an obscure light from vertically above. This was a necessary precaution, as on the previous day we had traced the movements of cotyledons placed in a deep box, the inner side of which was feebly illuminated on one side from a distant north-east window, and at each observation by a wax taper held for a minute or two on the same side; and the result was that the cotyledons travelled all day long to this side, though making in their course some conspicuous flexures, from which fact alone we might have [page 65] concluded that they were circumnutating; but we thought it advisable to make the tracing above given.
 
Radicles.—Glass filaments were fixed to two short radicles, placed so as to stand almost upright, and whilst bending downwards through geotropism their courses were strongly zigzag; from this latter circumstance circumnutation might have been inferred, had not their tips become slightly withered126 after the first 24 h., though they were watered and the air kept very damp. Nine radicles were next arranged in the manner formerly127 described, so that in growing downwards they left tracks on smoked glass-plates, inclined at various angles between 45o and 80o beneath the horizon. Almost every one of these tracks offered evidence in their greater or less breadth in different parts, or in little bridges of soot being left, that the apex had come alternately into more and less close contact with the glass. In the accompanying figure (Fig. 52) we have an accurate copy of one such track. In two instances alone (and in these the plates were highly inclined) there was some evidence of slight lateral movement. We presume therefore that the friction128 of the apex on the smoked surface, little as this could have been, sufficed to check the movement from side to side of these delicate radicles.
 
Fig. 52. Zea mays: track left on inclined smoked glass-plate by tip of radicle in growing downwards.
 
Avena sativa (Gramineae).—A cotyledon, 1 ? inch in height, was placed in front of a north-east window, and the movement of the apex was traced on a horizontal glass during two days. It moved towards the light in a slightly zigzag line from 9 to 11.30 A.M. on October 15th; it then moved a little backwards and zigzagged129 much until 5 P.M., after which hour, and curing the night, it continued to move towards the window. On the following morning the same movement was continued in a nearly straight line until 12.40 P.M., when the sky remained until 2.35 extraordinarily130 dark from thunder-clouds. During this interval of 1 h. 55 m., whilst the light was obscure, it was interesting to observe how circumnutation overcame heliotropism, for the apex, instead of continuing to move towards the window in a slightly zigzag line, reversed its course four times, making two small narrow ellipses. A diagram of this case will be given in the chapter on Heliotropism. [page 66]
 
A filament was next fixed to a cotyledon only 1/4 of an inch in height, which was illuminated exclusively from above, and as it was kept in a warm greenhouse, it grew rapidly; and now there could be no doubt about its circumnutation, for it described a figure of 8 as well as two small ellipses in 5 ? hours.
 
Nephrodium molle (Filices).—A seedling fern of this species came up by chance in a flowerpot near its parent. The frond131, as yet only slightly lobed132, was only .16 of an inch in length and .2 in breadth, and was supported on a rachis as fine as a hair and .23 of an inch in height. A very thin glass filament, which projected for a length of .36 of an inch, was fixed to the end of the frond. The movement was so highly magnified that the figure (Fig. 53) cannot be fully trusted; but the frond was constantly moving in a complex manner, and the bead greatly changed its course eighteen times in the 12 hours of observation. Within half an hour it often returned in a line almost parallel to its former course. The greatest amount of movement occurred between 4 and 6 P.M. The circumnutation of this plant is interesting, because the species in the genus Lygodium are well known to circumnutate conspicuously and to twine98 round any neighbouring object.
 
Fig. 53. Nephrodium molle: circumnutation of very young frond, traced in darkness on horizontal glass, from 9 A.M. to 9 P.M. Oct. 30th. Movement of bead magnified 48 times.
 
Selaginella Kraussii (?) (Lycopodiaceae).—A very young plant, only .4 of an inch in height, had sprung up in a pot in the hot-house. An extremely fine glass filament was fixed to the end of the frond-like stem, and the movement of the bead traced on a horizontal glass. It changed its course several times, as shown in Fig. 54, whilst observed during 13 h. 15 m., and returned at night to a point not far distant from that whence it had started in the morning. There can be no doubt that this little plant circumnutated.
 
Fig. 54. Selaginella Kraussii (?): circumnutation of young plant, kept in darkness, traced from 8.45 A.M. to 10 P.M. Oct. 31st. [page 67]

点击收听单词发音收听单词发音  

1 devoted xu9zka     
adj.忠诚的,忠实的,热心的,献身于...的
参考例句:
  • He devoted his life to the educational cause of the motherland.他为祖国的教育事业贡献了一生。
  • We devoted a lengthy and full discussion to this topic.我们对这个题目进行了长时间的充分讨论。
2 seedling GZYxQ     
n.秧苗,树苗
参考例句:
  • She cut down the seedling with one chop.她一刀就把小苗砍倒了。
  • The seedling are coming up full and green.苗长得茁壮碧绿。
3 recur wCqyG     
vi.复发,重现,再发生
参考例句:
  • Economic crises recur periodically.经济危机周期性地发生。
  • Of course,many problems recur at various periods.当然,有许多问题会在不同的时期反复提出。
4 zinc DfxwX     
n.锌;vt.在...上镀锌
参考例句:
  • Brass is formed by the fusion of copper and zinc.黄铜是通过铜和锌的熔合而成的。
  • Zinc is used to protect other metals from corrosion.锌被用来保护其他金属不受腐蚀。
5 vertical ZiywU     
adj.垂直的,顶点的,纵向的;n.垂直物,垂直的位置
参考例句:
  • The northern side of the mountain is almost vertical.这座山的北坡几乎是垂直的。
  • Vertical air motions are not measured by this system.垂直气流的运动不用这种系统来测量。
6 vertically SfmzYG     
adv.垂直地
参考例句:
  • Line the pages for the graph both horizontally and vertically.在这几页上同时画上横线和竖线,以便制作图表。
  • The human brain is divided vertically down the middle into two hemispheres.人脑从中央垂直地分为两半球。
7 filament sgCzj     
n.细丝;长丝;灯丝
参考例句:
  • The source of electrons in an electron microscope is a heated filament.电子显微镜中的电子源,是一加热的灯丝。
  • The lack of air in the bulb prevents the filament from burning up.灯泡内缺乏空气就使灯丝不致烧掉。
8 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
9 bead hdbyl     
n.念珠;(pl.)珠子项链;水珠
参考例句:
  • She accidentally swallowed a glass bead.她不小心吞下了一颗玻璃珠。
  • She has a beautiful glass bead and a bracelet in the box.盒子里有一颗美丽的玻璃珠和手镯。
10 fig L74yI     
n.无花果(树)
参考例句:
  • The doctor finished the fig he had been eating and selected another.这位医生吃完了嘴里的无花果,又挑了一个。
  • You can't find a person who doesn't know fig in the United States.你找不到任何一个在美国的人不知道无花果的。
11 apex mwrzX     
n.顶点,最高点
参考例句:
  • He reached the apex of power in the early 1930s.他在三十年代初达到了权力的顶峰。
  • His election to the presidency was the apex of his career.当选总统是他一生事业的顶峰。
12 standing 2hCzgo     
n.持续,地位;adj.永久的,不动的,直立的,不流动的
参考例句:
  • After the earthquake only a few houses were left standing.地震过后只有几幢房屋还立着。
  • They're standing out against any change in the law.他们坚决反对对法律做任何修改。
13 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
14 downwards MsDxU     
adj./adv.向下的(地),下行的(地)
参考例句:
  • He lay face downwards on his bed.他脸向下伏在床上。
  • As the river flows downwards,it widens.这条河愈到下游愈宽。
15 ascertain WNVyN     
vt.发现,确定,查明,弄清
参考例句:
  • It's difficult to ascertain the coal deposits.煤储量很难探明。
  • We must ascertain the responsibility in light of different situtations.我们必须根据不同情况判定责任。
16 protrude V0mzm     
v.使突出,伸出,突出
参考例句:
  • The tip of her tongue was protruding slightly.她的舌尖微微伸出。
  • A huge round mass of smooth rock protruding from the water.一块光滑的巨型圆石露出水面。
17 protruded ebe69790c4eedce2f4fb12105fc9e9ac     
v.(使某物)伸出,(使某物)突出( protrude的过去式和过去分词 )
参考例句:
  • The child protruded his tongue. 那小孩伸出舌头。 来自《简明英汉词典》
  • The creature's face seemed to be protruded, because of its bent carriage. 那人的脑袋似乎向前突出,那是因为身子佝偻的缘故。 来自英汉文学
18 affixed 0732dcfdc852b2620b9edaa452082857     
adj.[医]附着的,附着的v.附加( affix的过去式和过去分词 );粘贴;加以;盖(印章)
参考例句:
  • The label should be firmly affixed to the package. 这张标签应该牢牢地贴在包裹上。
  • He affixed the sign to the wall. 他将标记贴到墙上。 来自《简明英汉词典》
19 zigzag Hf6wW     
n.曲折,之字形;adj.曲折的,锯齿形的;adv.曲折地,成锯齿形地;vt.使曲折;vi.曲折前行
参考例句:
  • The lightning made a zigzag in the sky.闪电在天空划出一道Z字形。
  • The path runs zigzag up the hill.小径向山顶蜿蜒盘旋。
20 perpendicular GApy0     
adj.垂直的,直立的;n.垂直线,垂直的位置
参考例句:
  • The two lines of bones are set perpendicular to one another.这两排骨头相互垂直。
  • The wall is out of the perpendicular.这墙有些倾斜。
21 stationary CuAwc     
adj.固定的,静止不动的
参考例句:
  • A stationary object is easy to be aimed at.一个静止不动的物体是容易瞄准的。
  • Wait until the bus is stationary before you get off.你要等公共汽车停稳了再下车。
22 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
23 rev njvzwS     
v.发动机旋转,加快速度
参考例句:
  • It's his job to rev up the audience before the show starts.他要负责在表演开始前鼓动观众的热情。
  • Don't rev the engine so hard.别让发动机转得太快。
24 affected TzUzg0     
adj.不自然的,假装的
参考例句:
  • She showed an affected interest in our subject.她假装对我们的课题感到兴趣。
  • His manners are affected.他的态度不自然。
25 filaments 82be78199276cbe86e0e8b6c084015b6     
n.(电灯泡的)灯丝( filament的名词复数 );丝极;细丝;丝状物
参考例句:
  • Instead, sarcomere shortening occurs when the thin filaments'slide\" by the thick filaments. 此外,肌节的缩短发生于细肌丝沿粗肌丝“滑行”之际。 来自辞典例句
  • Wetting-force data on filaments of any diameter and shape can easily obtained. 各种直径和形状的长丝的润湿力数据是易于测量的。 来自辞典例句
26 protruding e7480908ef1e5355b3418870e3d0812f     
v.(使某物)伸出,(使某物)突出( protrude的现在分词 );凸
参考例句:
  • He hung his coat on a nail protruding from the wall. 他把上衣挂在凸出墙面的一根钉子上。
  • There is a protruding shelf over a fireplace. 壁炉上方有个突出的架子。 来自辞典例句
27 obliquely ad073d5d92dfca025ebd4a198e291bdc     
adv.斜; 倾斜; 间接; 不光明正大
参考例句:
  • From the gateway two paths led obliquely across the court. 从门口那儿,有两条小路斜越过院子。 来自辞典例句
  • He was receding obliquely with a curious hurrying gait. 他歪着身子,古怪而急促地迈着步子,往后退去。 来自辞典例句
28 oblique x5czF     
adj.斜的,倾斜的,无诚意的,不坦率的
参考例句:
  • He made oblique references to her lack of experience.他拐弯抹角地说她缺乏经验。
  • She gave an oblique look to one side.她向旁边斜看了一眼。
29 protrudes b9a9892d86d36fcc2b6624b1867a9d3e     
v.(使某物)伸出,(使某物)突出( protrude的第三人称单数 )
参考例句:
  • My part that protrudes from the gum has a'skin" of enamel. 在我突出于齿龈的部分有一层珐琅“皮”。 来自辞典例句
  • Hyperplasia median lobe of the prostate produces a polypoid mass that protrudes in the bladder lumen. 前列腺中叶异常增生,表现为息肉样肿物,突入膀胱腔内。 来自互联网
30 projection 9Rzxu     
n.发射,计划,突出部分
参考例句:
  • Projection takes place with a minimum of awareness or conscious control.投射在最少的知觉或意识控制下发生。
  • The projection of increases in number of house-holds is correct.对户数增加的推算是正确的。
31 embedded lt9ztS     
a.扎牢的
参考例句:
  • an operation to remove glass that was embedded in his leg 取出扎入他腿部玻璃的手术
  • He has embedded his name in the minds of millions of people. 他的名字铭刻在数百万人民心中。
32 lateral 83ey7     
adj.侧面的,旁边的
参考例句:
  • An airfoil that controls lateral motion.能够控制横向飞行的机翼。
  • Mr.Dawson walked into the court from a lateral door.道森先生从一个侧面的门走进法庭。
33 germinate hgSx1     
v.发芽;发生;发展
参考例句:
  • Seeds will not germinate without water.没有水,种子是不会发芽的。
  • Can thin and hollow seeds germinate?瘦瘪的种子能够发芽吗?
34 illuminated 98b351e9bc282af85e83e767e5ec76b8     
adj.被照明的;受启迪的
参考例句:
  • Floodlights illuminated the stadium. 泛光灯照亮了体育场。
  • the illuminated city at night 夜幕中万家灯火的城市
35 adhesive CyVzV     
n.粘合剂;adj.可粘着的,粘性的
参考例句:
  • You'll need a strong adhesive to mend that chair. 你需要一种粘性很强的东西来修理那把椅子。
  • Would you give me an adhesive stamp?请给我一枚带胶邮票好吗?
36 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
37 backwards BP9ya     
adv.往回地,向原处,倒,相反,前后倒置地
参考例句:
  • He turned on the light and began to pace backwards and forwards.他打开电灯并开始走来走去。
  • All the girls fell over backwards to get the party ready.姑娘们迫不及待地为聚会做准备。
38 partially yL7xm     
adv.部分地,从某些方面讲
参考例句:
  • The door was partially concealed by the drapes.门有一部分被门帘遮住了。
  • The police managed to restore calm and the curfew was partially lifted.警方设法恢复了平静,宵禁部分解除。
39 interfere b5lx0     
v.(in)干涉,干预;(with)妨碍,打扰
参考例句:
  • If we interfere, it may do more harm than good.如果我们干预的话,可能弊多利少。
  • When others interfere in the affair,it always makes troubles. 别人一卷入这一事件,棘手的事情就来了。
40 bent QQ8yD     
n.爱好,癖好;adj.弯的;决心的,一心的
参考例句:
  • He was fully bent upon the project.他一心扑在这项计划上。
  • We bent over backward to help them.我们尽了最大努力帮助他们。
41 joint m3lx4     
adj.联合的,共同的;n.关节,接合处;v.连接,贴合
参考例句:
  • I had a bad fall,which put my shoulder out of joint.我重重地摔了一跤,肩膀脫臼了。
  • We wrote a letter in joint names.我们联名写了封信。
42 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
43 ellipses 80016ca1ead584db2209b9bdd97c184f     
n.椭园,省略号;椭圆( ellipse的名词复数 );(语法结构上的)省略( ellipsis的名词复数 )
参考例句:
  • The planets move around the sun in ellipses. 各行星围绕太阳按椭圆形运转。 来自《简明英汉词典》
  • Summations are almost invariably indicated ellipses instead of the more prevalent sigma notation. 在表示“连加”的式子中,几乎一成不变地使用省略号来代替更为流行的“∑”符号。 来自辞典例句
44 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
45 seedlings b277b580afbd0e829dcc6bdb776b4a06     
n.刚出芽的幼苗( seedling的名词复数 )
参考例句:
  • Ninety-five per cent of the new seedlings have survived. 新栽的树苗95%都已成活。 来自《现代汉英综合大词典》
  • In such wet weather we must prevent the seedlings from rotting. 这样的阴雨天要防止烂秧。 来自《现代汉英综合大词典》
46 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
47 varied giIw9     
adj.多样的,多变化的
参考例句:
  • The forms of art are many and varied.艺术的形式是多种多样的。
  • The hotel has a varied programme of nightly entertainment.宾馆有各种晚间娱乐活动。
48 taper 3IVzm     
n.小蜡烛,尖细,渐弱;adj.尖细的;v.逐渐变小
参考例句:
  • You'd better taper off the amount of time given to rest.你最好逐渐地减少休息时间。
  • Pulmonary arteries taper towards periphery.肺动脉向周围逐渐变细。
49 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
50 lengthened 4c0dbc9eb35481502947898d5e9f0a54     
(时间或空间)延长,伸长( lengthen的过去式和过去分词 )
参考例句:
  • The afternoon shadows lengthened. 下午影子渐渐变长了。
  • He wanted to have his coat lengthened a bit. 他要把上衣放长一些。
51 laterally opIzAf     
ad.横向地;侧面地;旁边地
参考例句:
  • Shafts were sunk, with tunnels dug laterally. 竖井已经打下,并且挖有横向矿道。
  • When the plate becomes unstable, it buckles laterally. 当板失去稳定时,就发生横向屈曲。
52 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
53 illustrated 2a891807ad5907f0499171bb879a36aa     
adj. 有插图的,列举的 动词illustrate的过去式和过去分词
参考例句:
  • His lecture was illustrated with slides taken during the expedition. 他在讲演中使用了探险时拍摄到的幻灯片。
  • The manufacturing Methods: Will be illustrated in the next chapter. 制作方法将在下一章说明。
54 disturbance BsNxk     
n.动乱,骚动;打扰,干扰;(身心)失调
参考例句:
  • He is suffering an emotional disturbance.他的情绪受到了困扰。
  • You can work in here without any disturbance.在这儿你可不受任何干扰地工作。
55 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
56 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
57 sketched 7209bf19355618c1eb5ca3c0fdf27631     
v.草拟(sketch的过去式与过去分词形式)
参考例句:
  • The historical article sketched the major events of the decade. 这篇有关历史的文章概述了这十年中的重大事件。 来自《简明英汉词典》
  • He sketched the situation in a few vivid words. 他用几句生动的语言简述了局势。 来自《现代汉英综合大词典》
58 ascending CyCzrc     
adj.上升的,向上的
参考例句:
  • Now draw or trace ten dinosaurs in ascending order of size.现在按照体型由小到大的顺序画出或是临摹出10只恐龙。
59 descending descending     
n. 下行 adj. 下降的
参考例句:
  • The results are expressed in descending numerical order . 结果按数字降序列出。
  • The climbers stopped to orient themselves before descending the mountain. 登山者先停下来确定所在的位置,然后再下山。
60 diurnal ws5xi     
adj.白天的,每日的
参考例句:
  • Kangaroos are diurnal animals.袋鼠是日间活动的动物。
  • Over water the diurnal change in refraction is likely to be small. 在水面上,折光的周日变化可能是很小的。
61 perpendicularly 914de916890a9aa3714fa26fe542c2df     
adv. 垂直地, 笔直地, 纵向地
参考例句:
  • Fray's forehead was wrinkled both perpendicularly and crosswise. 弗雷的前额上纹路纵横。
  • Automatic resquaring feature insures nozzle is perpendicularly to the part being cut. 自动垂直功能,可以确保刀头回到与工件完全垂直的位置去切割。
62 positively vPTxw     
adv.明确地,断然,坚决地;实在,确实
参考例句:
  • She was positively glowing with happiness.她满脸幸福。
  • The weather was positively poisonous.这天气着实讨厌。
63 amplitude nLdyJ     
n.广大;充足;振幅
参考例句:
  • The amplitude of the vibration determines the loudness of the sound.振动幅度的大小决定声音的大小。
  • The amplitude at the driven end is fixed by the driving mechanism.由于驱动机构的作用,使驱动端的振幅保持不变。
64 abruptly iINyJ     
adv.突然地,出其不意地
参考例句:
  • He gestured abruptly for Virginia to get in the car.他粗鲁地示意弗吉尼亚上车。
  • I was abruptly notified that a half-hour speech was expected of me.我突然被通知要讲半个小时的话。
65 annexed ca83f28e6402c883ed613e9ee0580f48     
[法] 附加的,附属的
参考例句:
  • Germany annexed Austria in 1938. 1938年德国吞并了奥地利。
  • The outlying villages were formally annexed by the town last year. 那些偏远的村庄于去年正式被并入该镇。
66 germinating bfd6e4046522bd5ac73393f378e9c3e0     
n.& adj.发芽(的)v.(使)发芽( germinate的现在分词 )
参考例句:
  • Glyoxysomes are particularly well known in germinating fatly seeds. 人们已经知道,萌发的含油种子中有乙醛酸循环体。 来自辞典例句
  • Modern, industrial society, slowly germinating in the shadow of medievalism, burst the bonds of feudalism. 现代工业社会缓慢地在中世纪精神的阴影下孕育成长着,终于挣脱了封建制度的枷锁。 来自辞典例句
67 margins 18cef75be8bf936fbf6be827537c8585     
边( margin的名词复数 ); 利润; 页边空白; 差数
参考例句:
  • They have always had to make do with relatively small profit margins. 他们不得不经常设法应付较少的利润额。
  • To create more space between the navigation items, add left and right margins to the links. 在每个项目间留更多的空隙,加左或者右的margins来定义链接。
68 blurred blurred     
v.(使)变模糊( blur的过去式和过去分词 );(使)难以区分;模模糊糊;迷离
参考例句:
  • She suffered from dizziness and blurred vision. 她饱受头晕目眩之苦。
  • Their lazy, blurred voices fell pleasantly on his ears. 他们那种慢吞吞、含糊不清的声音在他听起来却很悦耳。 来自《简明英汉词典》
69 varnished 14996fe4d70a450f91e6de0005fd6d4d     
浸渍过的,涂漆的
参考例句:
  • The doors are then stained and varnished. 这些门还要染色涂清漆。
  • He varnished the wooden table. 他给那张木桌涂了清漆。
70 serpentine MEgzx     
adj.蜿蜒的,弯曲的
参考例句:
  • One part of the Serpentine is kept for swimmers.蜿蜒河的一段划为游泳区。
  • Tremolite laths and serpentine minerals are present in places.有的地方出现透闪石板条及蛇纹石。
71 perfectly 8Mzxb     
adv.完美地,无可非议地,彻底地
参考例句:
  • The witnesses were each perfectly certain of what they said.证人们个个对自己所说的话十分肯定。
  • Everything that we're doing is all perfectly above board.我们做的每件事情都是光明正大的。
72 transparent Smhwx     
adj.明显的,无疑的;透明的
参考例句:
  • The water is so transparent that we can see the fishes swimming.水清澈透明,可以看到鱼儿游来游去。
  • The window glass is transparent.窗玻璃是透明的。
73 ascertained e6de5c3a87917771a9555db9cf4de019     
v.弄清,确定,查明( ascertain的过去式和过去分词 )
参考例句:
  • The previously unidentified objects have now been definitely ascertained as being satellites. 原来所说的不明飞行物现在已证实是卫星。 来自《简明英汉词典》
  • I ascertained that she was dead. 我断定她已经死了。 来自《简明英汉词典》
74 favourable favourable     
adj.赞成的,称赞的,有利的,良好的,顺利的
参考例句:
  • The company will lend you money on very favourable terms.这家公司将以非常优惠的条件借钱给你。
  • We found that most people are favourable to the idea.我们发现大多数人同意这个意见。
75 deflected 3ff217d1b7afea5ab74330437461da11     
偏离的
参考例句:
  • The ball deflected off Reid's body into the goal. 球打在里德身上反弹进球门。
  • Most of its particles are deflected. 此物质的料子大多是偏斜的。
76 sinuous vExz4     
adj.蜿蜒的,迂回的
参考例句:
  • The river wound its sinuous way across the plain.这条河蜿蜒曲折地流过平原。
  • We moved along the sinuous gravel walks,with the great concourse of girls and boys.我们沿着曲折的石径,随着男孩女孩汇成的巨流一路走去。
77 flattened 1d5d9fedd9ab44a19d9f30a0b81f79a8     
[医](水)平扁的,弄平的
参考例句:
  • She flattened her nose and lips against the window. 她把鼻子和嘴唇紧贴着窗户。
  • I flattened myself against the wall to let them pass. 我身体紧靠着墙让他们通过。
78 unnatural 5f2zAc     
adj.不自然的;反常的
参考例句:
  • Did her behaviour seem unnatural in any way?她有任何反常表现吗?
  • She has an unnatural smile on her face.她脸上挂着做作的微笑。
79 germinated 34800fedce882b7815e35b85cf63273d     
v.(使)发芽( germinate的过去式和过去分词 )
参考例句:
  • First, the researchers germinated the seeds. 研究人员首先让种子发芽。 来自辞典例句
  • In spring they are germinated and grown for a year in beds. 春季里,他们在苗床发芽并生长一年。 来自辞典例句
80 subterranean ssWwo     
adj.地下的,地表下的
参考例句:
  • London has 9 miles of such subterranean passages.伦敦像这样的地下通道有9英里长。
  • We wandered through subterranean passages.我们漫游地下通道。
81 insignificant k6Mx1     
adj.无关紧要的,可忽略的,无意义的
参考例句:
  • In winter the effect was found to be insignificant.在冬季,这种作用是不明显的。
  • This problem was insignificant compared to others she faced.这一问题与她面临的其他问题比较起来算不得什么。
82 essentially nntxw     
adv.本质上,实质上,基本上
参考例句:
  • Really great men are essentially modest.真正的伟人大都很谦虚。
  • She is an essentially selfish person.她本质上是个自私自利的人。
83 conspicuous spszE     
adj.明眼的,惹人注目的;炫耀的,摆阔气的
参考例句:
  • It is conspicuous that smoking is harmful to health.很明显,抽烟对健康有害。
  • Its colouring makes it highly conspicuous.它的色彩使它非常惹人注目。
84 germination e3b6166de2e0bafce0467a9f740b91e3     
n.萌芽,发生;萌发;生芽;催芽
参考例句:
  • At the onset of germination, the hypocotyl elongates rapidly by cell enlargement. 萌发开始时,下胚轴依靠细胞增大而迅速伸长。 来自辞典例句
  • Excessive moisture is unfavourable for soybean germination. 水分过多对于大豆萌发是不利的。 来自辞典例句
85 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
86 accurately oJHyf     
adv.准确地,精确地
参考例句:
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
87 soot ehryH     
n.煤烟,烟尘;vt.熏以煤烟
参考例句:
  • Soot is the product of the imperfect combustion of fuel.煤烟是燃料不完全燃烧的产物。
  • The chimney was choked with soot.烟囱被煤灰堵塞了。
88 axis sdXyz     
n.轴,轴线,中心线;坐标轴,基准线
参考例句:
  • The earth's axis is the line between the North and South Poles.地轴是南北极之间的线。
  • The axis of a circle is its diameter.圆的轴线是其直径。
89 obliquity RIVxy     
n.倾斜度
参考例句:
  • It is here that the obliquity factor makes a crucial difference. 正是在这里,倾斜因子构成了重要的差别。 来自辞典例句
  • The obliquity of the ecliptic is the fundamental cause of the seasons. 黄道的倾角是季节的基本成因。 来自辞典例句
90 rigid jDPyf     
adj.严格的,死板的;刚硬的,僵硬的
参考例句:
  • She became as rigid as adamant.她变得如顽石般的固执。
  • The examination was so rigid that nearly all aspirants were ruled out.考试很严,几乎所有的考生都被淘汰了。
91 revolving 3jbzvd     
adj.旋转的,轮转式的;循环的v.(使)旋转( revolve的现在分词 );细想
参考例句:
  • The theatre has a revolving stage. 剧院有一个旋转舞台。
  • The company became a revolving-door workplace. 这家公司成了工作的中转站。
92 permanently KluzuU     
adv.永恒地,永久地,固定不变地
参考例句:
  • The accident left him permanently scarred.那次事故给他留下了永久的伤疤。
  • The ship is now permanently moored on the Thames in London.该船现在永久地停泊在伦敦泰晤士河边。
93 allied iLtys     
adj.协约国的;同盟国的
参考例句:
  • Britain was allied with the United States many times in history.历史上英国曾多次与美国结盟。
  • Allied forces sustained heavy losses in the first few weeks of the campaign.同盟国在最初几周内遭受了巨大的损失。
94 appreciable KNWz7     
adj.明显的,可见的,可估量的,可觉察的
参考例句:
  • There is no appreciable distinction between the twins.在这对孪生子之间看不出有什么明显的差别。
  • We bought an appreciable piece of property.我们买下的资产有增值的潜力。
95 cylindrical CnMza     
adj.圆筒形的
参考例句:
  • huge cylindrical gas tanks 巨大的圆柱形贮气罐
  • Beer cans are cylindrical. 啤酒罐子是圆筒形的。
96 cactus Cs1zF     
n.仙人掌
参考例句:
  • It was the first year that the cactus had produced flowers.这是这棵仙人掌第一年开花。
  • The giant cactus is the vegetable skycraper.高大的仙人掌是植物界巨人。
97 nil 7GgxO     
n.无,全无,零
参考例句:
  • My knowledge of the subject is practically nil.我在这方面的知识几乎等于零。
  • Their legal rights are virtually nil.他们实际上毫无法律权利。
98 twine vg6yC     
v.搓,织,编饰;(使)缠绕
参考例句:
  • He tied the parcel with twine.他用细绳捆包裹。
  • Their cardboard boxes were wrapped and tied neatly with waxed twine.他们的纸板盒用蜡线扎得整整齐齐。
99 twiner 32e43ae034a0fa1a261c7484a6a09f8c     
n.缠绕植物;搓绳机
参考例句:
100 conspicuously 3vczqb     
ad.明显地,惹人注目地
参考例句:
  • France remained a conspicuously uneasy country. 法国依然是个明显不太平的国家。
  • She figured conspicuously in the public debate on the issue. 她在该问题的公开辩论中很引人注目。
101 remarkably EkPzTW     
ad.不同寻常地,相当地
参考例句:
  • I thought she was remarkably restrained in the circumstances. 我认为她在那种情况下非常克制。
  • He made a remarkably swift recovery. 他康复得相当快。
102 complexity KO9z3     
n.复杂(性),复杂的事物
参考例句:
  • Only now did he understand the full complexity of the problem.直到现在他才明白这一问题的全部复杂性。
  • The complexity of the road map puzzled me.错综复杂的公路图把我搞糊涂了。
103 attained 1f2c1bee274e81555decf78fe9b16b2f     
(通常经过努力)实现( attain的过去式和过去分词 ); 达到; 获得; 达到(某年龄、水平、状况)
参考例句:
  • She has attained the degree of Master of Arts. 她已获得文学硕士学位。
  • Lu Hsun attained a high position in the republic of letters. 鲁迅在文坛上获得崇高的地位。
104 zigzagging 3a075bffeaf9d8f393973a0cb70ff1b6     
v.弯弯曲曲地走路,曲折地前进( zigzag的现在分词 );盘陀
参考例句:
  • She walked along, zigzagging with her head back. 她回头看着,弯弯扭扭地向前走去。 来自《简明英汉词典》
  • We followed the path zigzagging up the steep slope. 我们沿着小径曲曲折折地爬上陡坡。 来自互联网
105 steadily Qukw6     
adv.稳定地;不变地;持续地
参考例句:
  • The scope of man's use of natural resources will steadily grow.人类利用自然资源的广度将日益扩大。
  • Our educational reform was steadily led onto the correct path.我们的教学改革慢慢上轨道了。
106 peculiar cinyo     
adj.古怪的,异常的;特殊的,特有的
参考例句:
  • He walks in a peculiar fashion.他走路的样子很奇特。
  • He looked at me with a very peculiar expression.他用一种很奇怪的表情看着我。
107 descended guQzoy     
a.为...后裔的,出身于...的
参考例句:
  • A mood of melancholy descended on us. 一种悲伤的情绪袭上我们的心头。
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
108 acorns acorns     
n.橡子,栎实( acorn的名词复数 )
参考例句:
  • Great oaks from little acorns grow. 万丈高楼平地起。 来自《简明英汉词典》
  • Welcome to my new website!It may not look much at the moment, but great oaks from little acorns grow! 欢迎来到我的新网站。它现在可能微不足道,不过万丈高楼平地起嘛。 来自《简明英汉词典》
109 specimen Xvtwm     
n.样本,标本
参考例句:
  • You'll need tweezers to hold up the specimen.你要用镊子来夹这标本。
  • This specimen is richly variegated in colour.这件标本上有很多颜色。
110 tortuous 7J2za     
adj.弯弯曲曲的,蜿蜒的
参考例句:
  • We have travelled a tortuous road.我们走过了曲折的道路。
  • They walked through the tortuous streets of the old city.他们步行穿过老城区中心弯弯曲曲的街道。
111 appendage KeJy7     
n.附加物
参考例句:
  • After their work,the calculus was no longer an appendage and extension of Greek geometry.经过他们的工作,微积分不再是古希腊几何的附庸和延展。
  • Macmillan must have loathed being judged as a mere appendage to domestic politics.麦克米伦肯定极不喜欢只被当成国内政治的附属品。
112 attachment POpy1     
n.附属物,附件;依恋;依附
参考例句:
  • She has a great attachment to her sister.她十分依恋她的姐姐。
  • She's on attachment to the Ministry of Defense.她现在隶属于国防部。
113 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
114 epidermis AZhzW     
n.表皮
参考例句:
  • The external layer of skin is called the epidermis.皮的外层叫表皮。
  • There is a neoplasm originating in his leg's epidermis.他的腿上有个生长在表皮上的肿瘤。
115 crest raqyA     
n.顶点;饰章;羽冠;vt.达到顶点;vi.形成浪尖
参考例句:
  • The rooster bristled his crest.公鸡竖起了鸡冠。
  • He reached the crest of the hill before dawn.他于黎明前到达山顶。
116 briefly 9Styo     
adv.简单地,简短地
参考例句:
  • I want to touch briefly on another aspect of the problem.我想简单地谈一下这个问题的另一方面。
  • He was kidnapped and briefly detained by a terrorist group.他被一个恐怖组织绑架并短暂拘禁。
117 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
118 attenuated d547804f5ac8a605def5470fdb566b22     
v.(使)变细( attenuate的过去式和过去分词 );(使)变薄;(使)变小;减弱
参考例句:
  • an attenuated form of the virus 毒性已衰减的病毒
  • You're a seraphic suggestion of attenuated thought . 你的思想是轻灵得如同天使一般的。 来自辞典例句
119 extremity tlgxq     
n.末端,尽头;尽力;终极;极度
参考例句:
  • I hope you will help them in their extremity.我希望你能帮助在穷途末路的他们。
  • What shall we do in this extremity?在这种极其困难的情况下我们该怎么办呢?
120 wither dMVz1     
vt.使凋谢,使衰退,(用眼神气势等)使畏缩;vi.枯萎,衰退,消亡
参考例句:
  • She grows as a flower does-she will wither without sun.她象鲜花一样成长--没有太阳就会凋谢。
  • In autumn the leaves wither and fall off the trees.秋天,树叶枯萎并从树上落下来。
121 withers e30bf7b384bb09fe0dc96663bb9cde0b     
马肩隆
参考例句:
  • The girl's pitiful history would wring one's withers. 这女孩子的经历令人心碎。
  • "I will be there to show you," and so Mr. Withers withdrew. “我会等在那里,领你去看房间的,"威瑟斯先生这样说着,退了出去。 来自英汉文学 - 嘉莉妹妹
122 tapering pq5wC     
adj.尖端细的
参考例句:
  • Interest in the scandal seems to be tapering off. 人们对那件丑闻的兴趣似乎越来越小了。
  • Nonproductive expenditures keep tapering down. 非生产性开支一直在下降。
123 vestige 3LNzg     
n.痕迹,遗迹,残余
参考例句:
  • Some upright stones in wild places are the vestige of ancient religions.荒原上一些直立的石块是古老宗教的遗迹。
  • Every vestige has been swept away.一切痕迹都被一扫而光。
124 flexibility vjPxb     
n.柔韧性,弹性,(光的)折射性,灵活性
参考例句:
  • Her great strength lies in her flexibility.她的优势在于她灵活变通。
  • The flexibility of a man's muscles will lessen as he becomes old.人老了肌肉的柔韧性将降低。
125 protrusion ySWzE     
n.伸出,突出
参考例句:
  • a protrusion on the rock face 岩石表面的突起部分
  • Thumb-sucking can cause protrusion of the teeth. 经常吮吸拇指能使牙齿向外突出。 来自辞典例句
126 withered 342a99154d999c47f1fc69d900097df9     
adj. 枯萎的,干瘪的,(人身体的部分器官)因病萎缩的或未发育良好的 动词wither的过去式和过去分词形式
参考例句:
  • The grass had withered in the warm sun. 这些草在温暖的阳光下枯死了。
  • The leaves of this tree have become dry and withered. 这棵树下的叶子干枯了。
127 formerly ni3x9     
adv.从前,以前
参考例句:
  • We now enjoy these comforts of which formerly we had only heard.我们现在享受到了过去只是听说过的那些舒适条件。
  • This boat was formerly used on the rivers of China.这船从前航行在中国内河里。
128 friction JQMzr     
n.摩擦,摩擦力
参考例句:
  • When Joan returned to work,the friction between them increased.琼回来工作后,他们之间的摩擦加剧了。
  • Friction acts on moving bodies and brings them to a stop.摩擦力作用于运动着的物体,并使其停止。
129 zigzagged 81e4abcab1a598002ec58745d5f3d496     
adj.呈之字形移动的v.弯弯曲曲地走路,曲折地前进( zigzag的过去式和过去分词 )
参考例句:
  • The office buildings were slightly zigzagged to fit available ground space. 办公大楼为了配合可用的地皮建造得略呈之字形。 来自《现代英汉综合大词典》
  • The lightning zigzagged through the church yard. 闪电呈之字形划过教堂的院子。 来自《简明英汉词典》
130 extraordinarily Vlwxw     
adv.格外地;极端地
参考例句:
  • She is an extraordinarily beautiful girl.她是个美丽非凡的姑娘。
  • The sea was extraordinarily calm that morning.那天清晨,大海出奇地宁静。
131 frond Jhbxr     
n.棕榈类植物的叶子
参考例句:
  • The weavers made a hat from palm fronds.织工用棕榈叶织成了一顶帽子。
  • The village hut was thatched with palm fronds.乡村小屋用棕榈叶作顶。
132 lobed 97457137d788dc941364fb6d686d5114     
adj.浅裂的,叶状的
参考例句:
  • The testes are lobed organs. 精巢为叶状器官。 来自辞典例句
  • Old World vine with lobed evergreen leaves and black berrylike fruits. 有分裂的常青叶子和黑色小而圆的果实的旧大陆藤蔓植物。 来自互联网


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533