But to prove that A belongs to some B, this hypothesis must be made. If A belongs to no B, and C to some B, A will belong not to all C. If then this is false, it is true that A belongs to some B.
When A belongs to no B, suppose A belongs to some B, and let it have been assumed that C belongs to all B. Then it is necessary that A should belong to some C. But ex hypothesi it belongs to no C, so that it is false that A belongs to some B. But if it is supposed that A belongs to all B, the problem is not proved.
But this hypothesis must be made if we are prove that A belongs not to all B. For if A belongs to all B and C to some B, then A belongs to some C. But this we assumed not to be so, so it is false that A belongs to all B. But in that case it is true that A belongs not to all B. If however it is assumed that A belongs to some B, we shall have the same result as before.
It is clear then that in all the syllogisms which proceed per impossibile the contradictory2 must be assumed. And it is plain that in the middle figure an affirmative conclusion, and in the last figure a universal conclusion, are proved in a way.
点击收听单词发音
1 syllogism | |
n.演绎法,三段论法 | |
参考例句: |
|
|
2 contradictory | |
adj.反驳的,反对的,抗辩的;n.正反对,矛盾对立 | |
参考例句: |
|
|
欢迎访问英文小说网 |