A short time previous to this, he had admired the operation of figures, but labored2 under every disadvantage, for want of education. As he had not yet been taught to read, he got a few lessons in English, and was soon enabled to comprehend a plain author. He then purchased a treatise3 on arithmetic; and though he could not write, he soon became so expert a calculator, from mental operations only, that he could tell, without setting down a figure, the product of any two numbers multiplied together, although the multiplier and the multiplicand each of them consisted of nine figures. It was equally astonishing that he could answer, in the same manner, questions in division, in decimal fractions, or in the extraction of the square or cube roots, where such a multiplicity[Pg 73] of figures is often required in the operation. Yet at this time he did not know that any merit was due to himself, conceiving that the capacity of other people was like his own.
Finding himself still laboring4 under farther difficulties for want of a knowledge of writing, he taught himself to write a tolerable hand. As he had not heard of mathematics, he had no idea of anything, in regard to numbers, beyond what he had learned. He thought himself a master of figures, and challenged all his companions and the members of a society he attended, to a trial. Something, however, was proposed to him concerning Euclid. As he did not understand the meaning of the word, he was silent; but afterwards found it meant a book, containing the elements of geometry; this he purchased, and applied himself very diligently5 to the study of it, and against the next meeting he was prepared with an answer in this new science.
He now found himself launching out into a field, of which before he had no conception. He continued his geometrical studies; and as the demonstration6 of the different propositions in Euclid depend entirely7 upon a recollection of some of those preceding, his memory was of the utmost service to him. Besides, it was a study exactly adapted to his mind; and while he was attending to the business of his farm, and humming over some tune8 or other, his attention was often engaged with some of his geometrical propositions. A few figures with a piece of chalk, upon the knee of his breeches, or any other convenient spot, were all[Pg 74] he needed to clear up the most difficult parts of the science.
He now began to be struck with the works of nature, and paid particular attention to the theory of the earth, the moon, and the rest of the planets belonging to this system, of which the sun is the centre; and considering the distance and magnitude of the different bodies belonging to it, and the distance of the fixed9 stars, he soon conceived each of them to be the centre of a different system. He well considered the law of gravity, and that of the centripetal10 and centrifugal forces, and the cause of the ebbing11 and flowing of the tides; also the projection12 of the sphere—stereographic, orthographic13, and gnomical; also trigonometry and astronomy. By this time he was possessed14 of a small library.
He next turned his thoughts to algebra15, and took up Emerson's treatise on that subject, and went through it with great success. He also grounded himself in the art of navigation and the principles of mechanics; likewise the doctrine16 of motion, of falling bodies, and the elements of optics, &c., as a preliminary to fluxions, which had but lately been discovered by Sir Isaac Newton; as the boundary of the mathematics, he went through conic sections, &c. Though he experienced some difficulty at his first entrance, yet he did not rest till he made himself master of both a fluxion and a flowing quantity. As he had paid a similar attention to the intermediate parts, he soon became so conversant17 with every branch of the mathematics, that no question was ever proposed to him which he could not answer.
[Pg 75]He used to take pleasure in solving the arithmetical questions then common in the magazines, but his answers were seldom inserted, except by or in the name of some other person, for he had no ambition to make his abilities known. He frequently had questions from his pupils and other gentlemen in London; from the universities of Oxford18 and Cambridge, and different parts of the country, as well as from the university of Gottingen in Germany. These, however difficult, he never failed to answer; and from the minute inquiry19 he made into natural philosophy, there was scarcely a phenomenon in nature, that ever came to his knowledge or observation, but he could, in some measure at least, reasonably account for it.
He went by the name of Willy-o'-th'-Hollins, for many years after he left his residence in that place. The latter portion of his life was spent in the neighborhood of Cartmell, where he was best known by the name of Willy Gibson, still continuing his former occupation. For the last forty years he kept a school of about eight or ten gentlemen, who boarded and lodged20 at his own farm-house; and having a happy turn in explaining his ideas, he formed a great number of very able mathematicians21, as well as expert accountants. This self-taught philosopher and wonderful man, died on the 4th of October, 1792, at Blaith, near Cartmell, in consequence of a fall, leaving behind him a widow and ten children.
点击收听单词发音
1 applied | |
adj.应用的;v.应用,适用 | |
参考例句: |
|
|
2 labored | |
adj.吃力的,谨慎的v.努力争取(for)( labor的过去式和过去分词 );苦干;详细分析;(指引擎)缓慢而困难地运转 | |
参考例句: |
|
|
3 treatise | |
n.专著;(专题)论文 | |
参考例句: |
|
|
4 laboring | |
n.劳动,操劳v.努力争取(for)( labor的现在分词 );苦干;详细分析;(指引擎)缓慢而困难地运转 | |
参考例句: |
|
|
5 diligently | |
ad.industriously;carefully | |
参考例句: |
|
|
6 demonstration | |
n.表明,示范,论证,示威 | |
参考例句: |
|
|
7 entirely | |
ad.全部地,完整地;完全地,彻底地 | |
参考例句: |
|
|
8 tune | |
n.调子;和谐,协调;v.调音,调节,调整 | |
参考例句: |
|
|
9 fixed | |
adj.固定的,不变的,准备好的;(计算机)固定的 | |
参考例句: |
|
|
10 centripetal | |
adj.向心的 | |
参考例句: |
|
|
11 ebbing | |
(指潮水)退( ebb的现在分词 ); 落; 减少; 衰落 | |
参考例句: |
|
|
12 projection | |
n.发射,计划,突出部分 | |
参考例句: |
|
|
13 orthographic | |
adj.正字法的,拼字正确的;正射 | |
参考例句: |
|
|
14 possessed | |
adj.疯狂的;拥有的,占有的 | |
参考例句: |
|
|
15 algebra | |
n.代数学 | |
参考例句: |
|
|
16 doctrine | |
n.教义;主义;学说 | |
参考例句: |
|
|
17 conversant | |
adj.亲近的,有交情的,熟悉的 | |
参考例句: |
|
|
18 Oxford | |
n.牛津(英国城市) | |
参考例句: |
|
|
19 inquiry | |
n.打听,询问,调查,查问 | |
参考例句: |
|
|
20 lodged | |
v.存放( lodge的过去式和过去分词 );暂住;埋入;(权利、权威等)归属 | |
参考例句: |
|
|
21 mathematicians | |
数学家( mathematician的名词复数 ) | |
参考例句: |
|
|
欢迎访问英文小说网 |