Every description of the scene of an event or of the position of an object in space is based on the specification3 of the point on a rigid body (body of reference) with which that event or object coincides. This applies not only to scientific description, but also to everyday life. If I analyse the place specification “Times Square, New York,”2 I arrive at the following result. The earth is the rigid body to which the specification of place refers; “Times Square, New York,” is a well-defined point, to which a name has been assigned, and with which the event coincides in space.3
This primitive4 method of place specification deals only with places on the surface of rigid bodies, and is dependent on the existence of points on this surface which are distinguishable from each other. But we can free ourselves from both of these limitations without altering the nature of our specification of position. If, for instance, a cloud is hovering5 over Times Square, then we can determine its position relative to the surface of the earth by erecting6 a pole perpendicularly8 on the Square, so that it reaches the cloud. The length of the pole measured with the standard measuring-rod, combined with the specification of the position of the foot of the pole, supplies us with a complete place specification. On the basis of this illustration, we are able to see the manner in which a refinement9 of the conception of position has been developed.
(a) We imagine the rigid body, to which the place specification is referred, supplemented in such a manner that the object whose position we require is reached by the completed rigid body.
(b) In locating the position of the object, we make use of a number (here the length of the pole measured with the measuring-rod) instead of designated points of reference.
We speak of the height of the cloud even when the pole which reaches the cloud has not been erected10. By means of optical observations of the cloud from different positions on the ground, and taking into account the properties of the propagation of light, we determine the length of the pole we should have required in order to reach the cloud.
From this consideration we see that it will be advantageous11 if, in the description of position, it should be possible by means of numerical measures to make ourselves independent of the existence of marked positions (possessing names) on the rigid body of reference. In the physics of measurement this is attained12 by the application of the Cartesian system of co-ordinates.
This consists of three plane surfaces perpendicular7 to each other and rigidly13 attached to a rigid body. Referred to a system of co-ordinates, the scene of any event will be determined14 (for the main part) by the specification of the lengths of the three perpendiculars15 or co-ordinates left-parenthesis x comma y comma z right-parenthesis which can be dropped from the scene of the event to those three plane surfaces. The lengths of these three perpendiculars can be determined by a series of manipulations with rigid measuring-rods performed according to the rules and methods laid down by Euclidean geometry.
In practice, the rigid surfaces which constitute the system of co-ordinates are generally not available; furthermore, the magnitudes of the co-ordinates are not actually determined by constructions with rigid rods, but by indirect means. If the results of physics and astronomy are to maintain their clearness, the physical meaning of specifications16 of position must always be sought in accordance with the above considerations.4
We thus obtain the following result: Every description of events in space involves the use of a rigid body to which such events have to be referred. The resulting relationship takes for granted that the laws of Euclidean geometry hold for “distances;” the “distance” being represented physically17 by means of the convention of two marks on a rigid body.
1 Here we have assumed that there is nothing left over i.e. that the measurement gives a whole number. This difficulty is got over by the use of divided measuring-rods, the introduction of which does not demand any fundamentally new method. ↑
2 Einstein used “Potsdamer Platz, Berlin” in the original text. In the authorised translation this was supplemented with “Trafalgar Square, London”. We have changed this to “Times Square, New York”, as this is the best known location to English speakers in the present day. ↑
3 It is not necessary here to investigate further the significance of the expression “coincidence in space.” This conception is sufficiently18 obvious to ensure that differences of opinion are scarcely likely to arise as to its applicability in practice. ↑
4 A refinement and modification19 of these views does not become necessary until we come to deal with the general theory of relativity, treated in the second part of this book.
点击收听单词发音
1 interpretation | |
n.解释,说明,描述;艺术处理 | |
参考例句: |
|
|
2 rigid | |
adj.严格的,死板的;刚硬的,僵硬的 | |
参考例句: |
|
|
3 specification | |
n.详述;[常pl.]规格,说明书,规范 | |
参考例句: |
|
|
4 primitive | |
adj.原始的;简单的;n.原(始)人,原始事物 | |
参考例句: |
|
|
5 hovering | |
鸟( hover的现在分词 ); 靠近(某事物); (人)徘徊; 犹豫 | |
参考例句: |
|
|
6 erecting | |
v.使直立,竖起( erect的现在分词 );建立 | |
参考例句: |
|
|
7 perpendicular | |
adj.垂直的,直立的;n.垂直线,垂直的位置 | |
参考例句: |
|
|
8 perpendicularly | |
adv. 垂直地, 笔直地, 纵向地 | |
参考例句: |
|
|
9 refinement | |
n.文雅;高尚;精美;精制;精炼 | |
参考例句: |
|
|
10 ERECTED | |
adj. 直立的,竖立的,笔直的 vt. 使 ... 直立,建立 | |
参考例句: |
|
|
11 advantageous | |
adj.有利的;有帮助的 | |
参考例句: |
|
|
12 attained | |
(通常经过努力)实现( attain的过去式和过去分词 ); 达到; 获得; 达到(某年龄、水平、状况) | |
参考例句: |
|
|
13 rigidly | |
adv.刻板地,僵化地 | |
参考例句: |
|
|
14 determined | |
adj.坚定的;有决心的 | |
参考例句: |
|
|
15 perpendiculars | |
n.垂直的,成直角的( perpendicular的名词复数 );直立的 | |
参考例句: |
|
|
16 specifications | |
n.规格;载明;详述;(产品等的)说明书;说明书( specification的名词复数 );详细的计划书;载明;详述 | |
参考例句: |
|
|
17 physically | |
adj.物质上,体格上,身体上,按自然规律 | |
参考例句: |
|
|
18 sufficiently | |
adv.足够地,充分地 | |
参考例句: |
|
|
19 modification | |
n.修改,改进,缓和,减轻 | |
参考例句: |
|
|
欢迎访问英文小说网 |