小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » The Economy of Workshop Mainipulation » CHAPTER VII. MOTIVE MACHINERY.
选择底色: 选择字号:【大】【中】【小】
CHAPTER VII. MOTIVE MACHINERY.
关注小说网官方公众号(noveltingroom),原版名著免费领。
In this class belong—

Steam-engines.
Caloric or air engines.
Water-wheels or water-engines.
Wind-wheels or pneumatic engines.

These four types comprehend the motive1-power in general use at the present day. In considering different engines for motive-power in a way to best comprehend their nature, the first view to be taken is that they are all directed to the same end, and all deal with the same power; and in this way avoid, if possible, the impression of there being different kinds of power, as the terms water-power, steam-power, and so on, seem to imply. We speak of steam-power, water-power, or wind-power; but power is the same from whatever source derived2, and these distinctions merely indicate different natural sources from which power is derived, or the different means employed to utilise and apply it.

Primarily, power is a product of heat; and wherever force and motion exist, they can be traced to heat as the generating element: whether the medium through which the power is [30] obtained be by the expansion of water or gases, the gravity of water, or the force of wind, heat will always be found as the prime source. So also will the phenomenon of expansion be found a constant principle of developing power, as will again be pointed3 out. As steam-engines constitute a large share of the machinery4 commonly met with, and as a class of machinery naturally engrosses5 attention in proportion, the study of mechanics generally begins with steam-engines, or steam machinery, as it may be called.

The subject of steam-power, aside from its mechanical consideration, is one that may afford many useful lessons, by tracing its history and influence, not only upon mechanical industry, but upon human interests generally. This subject is often treated of, and both its interest and importance conceded; but no one has, so far as I know, from statistical6 and other sources, ventured to estimate in a methodical way the changes that can be traced directly and indirectly7 to steam-power.

The steam-engine is the most important, and in England and America best known among motive agents. The importance of steam contrasted with other sources of motive-power is due not so much to a diminished cost of power obtained in this way, but for the reason that the amount of power produced can be determined8 at will, and in most cases without reference to local conditions; the machinery can with fuel and water be transported from place to place, as in the case of locomotives which not only supply power for their own transit9, but move besides vast loads of merchandise, or travel.

For manufacturing processes, one importance of steam-power rests in the fact that such power can be taken to the material; and beside other advantages gained thereby10, is the difference in the expense of transporting manufactured products and the raw material. In the case of iron manufacture, for example, it would cost ten times as much to transport the ore and the fuel used in smelting11 as it does to transport the manufactured iron; steam-power saves this difference, and without such power our present iron traffic would be impossible. In a great many manufacturing processes steam is required for heating, bleaching12, boiling, and so on; besides, steam is now to a large extent employed for warming buildings, so that even when water or other power is employed, in most cases steam-generating apparatus13 has to be set up in addition. In many cases waste [31] steam or waste heat from a steam-engine can be employed for the purposes named, saving most of the expense that must be incurred14 if special apparatus is employed.

Other reasons for the extended and general use of steam as a power, besides those already named, are to be found in the fact that no other available element or substance can be expanded to a given degree at so small a cost as water; and that its temperature will not rise to a point injurious to machinery, and, further, in the very important property of lubrication which steam possesses, protecting the frictional surfaces of pistons17 and valves, which it is impossible to keep oiled because of their inaccessibility18 or temperature.

The steam-engine, in the sense in which the term is employed, means not only steam-using machinery, but steam-generating machinery or plant; it includes the engine proper, with the boiler19, mechanism20 for feeding water to the boiler, machinery for governing speed, indicators21, and other details.

An apprentice22 must guard against the too common impression that the engine, cylinder23, piston16, valves, and so on, are the main parts of steam machinery, and that the boiler and furnace are only auxiliaries24. The boiler is, in fact, the base of the whole, that part where the power is generated, the engine being merely an agent for transmitting power from the boiler to work that is performed. This proposition would, of course, be reached by any one in reasoning about the matter and following it to a conclusion, but the fact should be fixed25 in the mind at the beginning.

When we look at a steam-engine there are certain impressions conveyed to the mind, and by these impressions we are governed in a train of reflection that follows. We may conceive of a cylinder and its details as a complete machine with independent functions, or we can conceive of it as a mechanical device for transmitting the force generated by a boiler, and this conception might be independent of, or even contrary to, specific knowledge that we at the same time possessed26; hence the importance of starting with a correct idea of the boiler being, as we may say, the base of steam machinery.

As reading books of fiction sometimes expands the mind and enables it to grasp great practical truths, so may a study of abstract principles often enable us to comprehend the simplest forms of mechanism. Even Humboldt and Agassiz, it is said, [32] resorted sometimes to imaginative speculations27 as a means of enabling them to grasp new truths.

In no other branch of machinery has so much research and experiment been made during eighty years past as in steam machinery, and, strange to say, the greater part of this research has been directed to the details of engines; yet there has been no improvement made during the time which has effected any considerable saving of heat or expense. The steam-engines of fifty years ago, considered as steam-using machines, utilised nearly the same proportion of the energy or power developed by the boiler as the most improved engines of modern construction—a fact that in itself indicates that an engine is not the vital part of steam machinery. There is not the least doubt that if the efforts to improve steam-engines had been mainly directed to economising heat and increasing the evaporative power of boilers28, much more would have been accomplished29 with the same amount of research. This remark, however, does not apply to the present day, when the principles of steam-power are so well understood, and when heat is recognised as the proper element to deal with in attempts to diminish the expense of power. There is, of course, various degrees of economy in steam-using as well as in steam-generating machinery; but so long as the best steam machinery does not utilise but one-tenth or one-fifteenth part of the heat represented in the fuel burned, there need be no question as to the point where improvements in such machinery should be mainly directed.

The principle upon which steam-engines operate may be briefly30 explained as follows:—

A cubic inch of water, by taking up a given amount of heat, is expanded to more than five hundred cubic inches of steam, at a pressure of forty-five pounds to the square inch. This extraordinary expansion, if performed in a close vessel31, would exert a power five hundred times as great as would be required to force the same quantity of water into the vessel against this expansive pressure; in other words, the volume of the water when put into the vessel would be but one five-hundredth part of its volume when it is allowed to escape, and this expansion, when confined in a steam-boiler, exerts the force that is called steam-power. This force or power is, through the means of the engine and its details, communicated and applied32 to different kinds of work where force and movement are required. The water [33] employed to generate steam, like the engine and the boiler, is merely an agent through which the energy of heat is applied.

This, again, reaches the proposition that power is heat, and heat is power, the two being convertible33, and, according to modern science, indestructible; so that power, when used, must give off its mechanical equivalent of heat, or heat, when utilised, develop its equivalent in power. If the whole amount of heat represented in the fuel used by a steam-engine could be applied, the effect would be, as before stated, from ten to fifteen times as great as it is in actual practice, from which it must be inferred that a steam-engine is a very imperfect machine for utilising heat. This great loss arises from various causes, among which is that the heat cannot be directly nor fully34 communicated to the water. To store up and retain the water after it is expanded into steam, a strong vessel, called a boiler, is required, and all the heat that is imparted to the water has to pass through the plates of this boiler, which stand as a wall between the heat and its work.

To summarise35, we have the following propositions relating to steam machinery:—

1. The steam-engine is an agent for utilising the power of heat and applying it to useful purposes.

2. The power of a steam-engine is derived by expanding water in a confining vessel, and employing the force exerted by pressure thus obtained.

3. The power developed is as the difference of volume between the feed-water forced into the boiler, and the volume of the steam that is drawn36 from the boiler, or as the amount of heat taken up by the water.

4. The heat that may be utilised is what will pass through the plates of the boiler, and be taken up by the water, and is but a small share of what the fuel produces.

5. The boiler is the main part, where power is generated, and the engine is but an agent for transmitting this power to the work performed.

6. The loss of power in a steam-engine arises from the heat carried off in the exhaust steam, loss by radiation, and the friction15 of the moving parts.

7. By condensing the steam before it leaves the engine, so that the steam is returned to the air in the form of water, and of the same volume as when it entered the boiler, there is a gain [34] effected by avoiding atmospheric37 pressure, varying according to the perfection of the arrangements employed.

Engines operated by means of hot air, called caloric engines, and engines operated by gas, or explosive substances, all act substantially upon the same general principles as steam-engines; the greatest distinction being between those engines wherein the generation of heat is by the combustion38 of fuel, and those wherein heat and expansion are produced by chemical action. With the exception of a limited number of caloric or air engines, steam machinery comprises nearly all expansive engines that are employed at this day for motive-power; and it may be safely assumed that a person who has mastered the general principles of steam-engines will find no trouble in analysing and understanding any machinery acting39 from expansion due to heat, whether air, gas, or explosive agents be employed.

This method of treating the subject of motive-engines will no doubt be presenting it in a new way, but it is merely beginning at an unusual place. A learner who commences with first principles, instead of pistons, valves, connections, and bearings, will find in the end that he has not only adopted the best course, but the shortest one to understand steam and other expansive engines.

(1.) What is principal among the details of steam machinery?—(2.) What has been the most important improvement recently made in steam machinery?—(3.) What has been the result of expansive engines generally stated?—(4.) Why has water proved the most successful among various expansive substances employed to develop power?—(5.) Why does a condensing engine develop more power than a non-condensing one?—(6.) How far back from its development into power can heat be traced as an element in nature?—(7.) Has the property of combustion a common source in all substances?

点击收听单词发音收听单词发音  

1 motive GFzxz     
n.动机,目的;adv.发动的,运动的
参考例句:
  • The police could not find a motive for the murder.警察不能找到谋杀的动机。
  • He had some motive in telling this fable.他讲这寓言故事是有用意的。
2 derived 6cddb7353e699051a384686b6b3ff1e2     
vi.起源;由来;衍生;导出v.得到( derive的过去式和过去分词 );(从…中)得到获得;源于;(从…中)提取
参考例句:
  • Many English words are derived from Latin and Greek. 英语很多词源出于拉丁文和希腊文。 来自《简明英汉词典》
  • He derived his enthusiasm for literature from his father. 他对文学的爱好是受他父亲的影响。 来自《简明英汉词典》
3 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
4 machinery CAdxb     
n.(总称)机械,机器;机构
参考例句:
  • Has the machinery been put up ready for the broadcast?广播器材安装完毕了吗?
  • Machinery ought to be well maintained all the time.机器应该随时注意维护。
5 engrosses 5941aa189060de8acacb0131f0d512b6     
v.使全神贯注( engross的第三人称单数 )
参考例句:
6 statistical bu3wa     
adj.统计的,统计学的
参考例句:
  • He showed the price fluctuations in a statistical table.他用统计表显示价格的波动。
  • They're making detailed statistical analysis.他们正在做具体的统计分析。
7 indirectly a8UxR     
adv.间接地,不直接了当地
参考例句:
  • I heard the news indirectly.这消息我是间接听来的。
  • They were approached indirectly through an intermediary.通过一位中间人,他们进行了间接接触。
8 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
9 transit MglzVT     
n.经过,运输;vt.穿越,旋转;vi.越过
参考例句:
  • His luggage was lost in transit.他的行李在运送中丢失。
  • The canal can transit a total of 50 ships daily.这条运河每天能通过50条船。
10 thereby Sokwv     
adv.因此,从而
参考例句:
  • I have never been to that city,,ereby I don't know much about it.我从未去过那座城市,因此对它不怎么熟悉。
  • He became a British citizen,thereby gaining the right to vote.他成了英国公民,因而得到了投票权。
11 smelting da3aff64f83e01ef85af6da3b7d675d5     
n.熔炼v.熔炼,提炼(矿石)( smelt的现在分词 )
参考例句:
  • a method of smelting iron 一种炼铁方法
  • Fire provided a means of smelting ores. 火提供了熔炼矿石的手段。 来自辞典例句
12 bleaching c8f59fe090b4d03ec300145821501bd3     
漂白法,漂白
参考例句:
  • Moderately weathered rock showed more intense bleaching and fissuring in the feldspars. 中等风化岩石则是指长石有更为强烈的变白现象和裂纹现象。
  • Bleaching effects are very strong and show on air photos. 退色效应非常强烈,并且反映在航空象片上。
13 apparatus ivTzx     
n.装置,器械;器具,设备
参考例句:
  • The school's audio apparatus includes films and records.学校的视听设备包括放映机和录音机。
  • They had a very refined apparatus.他们有一套非常精良的设备。
14 incurred a782097e79bccb0f289640bab05f0f6c     
[医]招致的,遭受的; incur的过去式
参考例句:
  • She had incurred the wrath of her father by marrying without his consent 她未经父亲同意就结婚,使父亲震怒。
  • We will reimburse any expenses incurred. 我们将付还所有相关费用。
15 friction JQMzr     
n.摩擦,摩擦力
参考例句:
  • When Joan returned to work,the friction between them increased.琼回来工作后,他们之间的摩擦加剧了。
  • Friction acts on moving bodies and brings them to a stop.摩擦力作用于运动着的物体,并使其停止。
16 piston w2Rz7     
n.活塞
参考例句:
  • They use a piston engine instead.他们改用活塞发动机。
  • The piston moves by steam pressure.活塞在蒸汽压力下运动。
17 pistons c10621515a8dfd90d65ed99cc8c6e998     
活塞( piston的名词复数 )
参考例句:
  • Some pistons have seating rings of metal or leather. 有些活塞上有金属或皮革的密封环。
  • A pump uses valves and pistons. 泵使用阀和活塞。
18 inaccessibility 1245d018d72e23bca8dbb4c4c6f69a47     
n. 难接近, 难达到, 难达成
参考例句:
  • Her tone and her look still enveloped her in a soft inaccessibility. 她的语调和神态依旧把她禁锢在一种不可接近的状态中。
19 boiler OtNzI     
n.锅炉;煮器(壶,锅等)
参考例句:
  • That boiler will not hold up under pressure.那种锅炉受不住压力。
  • This new boiler generates more heat than the old one.这个新锅炉产生的热量比旧锅炉多。
20 mechanism zCWxr     
n.机械装置;机构,结构
参考例句:
  • The bones and muscles are parts of the mechanism of the body.骨骼和肌肉是人体的组成部件。
  • The mechanism of the machine is very complicated.这台机器的结构是非常复杂的。
21 indicators f46872fc1b5f08e9d32bd107be1df829     
(仪器上显示温度、压力、耗油量等的)指针( indicator的名词复数 ); 指示物; (车辆上的)转弯指示灯; 指示信号
参考例句:
  • The economic indicators are better than expected. 经济指标比预期的好。
  • It is still difficult to develop indicators for many concepts used in social science. 为社会科学领域的许多概念确立一个指标仍然很难。
22 apprentice 0vFzq     
n.学徒,徒弟
参考例句:
  • My son is an apprentice in a furniture maker's workshop.我的儿子在一家家具厂做学徒。
  • The apprentice is not yet out of his time.这徒工还没有出徒。
23 cylinder rngza     
n.圆筒,柱(面),汽缸
参考例句:
  • What's the volume of this cylinder?这个圆筒的体积有多少?
  • The cylinder is getting too much gas and not enough air.汽缸里汽油太多而空气不足。
24 auxiliaries 03aff0515b792031bb456d2dfbcc5b28     
n.助动词 ( auxiliary的名词复数 );辅助工,辅助人员
参考例句:
  • These auxiliaries have made our work much easier. 有了这些辅助人员,我们的工作才顺利多了。 来自《现代汉英综合大词典》
  • In English the future tense is often rendered by means of auxiliaries. 在英语中,将来时常用助动词来表现。 来自辞典例句
25 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
26 possessed xuyyQ     
adj.疯狂的;拥有的,占有的
参考例句:
  • He flew out of the room like a man possessed.他像着了魔似地猛然冲出房门。
  • He behaved like someone possessed.他行为举止像是魔怔了。
27 speculations da17a00acfa088f5ac0adab7a30990eb     
n.投机买卖( speculation的名词复数 );思考;投机活动;推断
参考例句:
  • Your speculations were all quite close to the truth. 你的揣测都很接近于事实。 来自《现代英汉综合大词典》
  • This possibility gives rise to interesting speculations. 这种可能性引起了有趣的推测。 来自《用法词典》
28 boilers e1c9396ee45d737fc4e1d3ae82a0ae1f     
锅炉,烧水器,水壶( boiler的名词复数 )
参考例句:
  • Even then the boilers often burst or came apart at the seams. 甚至那时的锅炉也经常从焊接处爆炸或裂开。 来自英汉非文学 - 科学史
  • The clean coal is sent to a crusher and the boilers. 干净的煤送入破碎机和锅炉。
29 accomplished UzwztZ     
adj.有才艺的;有造诣的;达到了的
参考例句:
  • Thanks to your help,we accomplished the task ahead of schedule.亏得你们帮忙,我们才提前完成了任务。
  • Removal of excess heat is accomplished by means of a radiator.通过散热器完成多余热量的排出。
30 briefly 9Styo     
adv.简单地,简短地
参考例句:
  • I want to touch briefly on another aspect of the problem.我想简单地谈一下这个问题的另一方面。
  • He was kidnapped and briefly detained by a terrorist group.他被一个恐怖组织绑架并短暂拘禁。
31 vessel 4L1zi     
n.船舶;容器,器皿;管,导管,血管
参考例句:
  • The vessel is fully loaded with cargo for Shanghai.这艘船满载货物驶往上海。
  • You should put the water into a vessel.你应该把水装入容器中。
32 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
33 convertible aZUyK     
adj.可改变的,可交换,同意义的;n.有活动摺篷的汽车
参考例句:
  • The convertible sofa means that the apartment can sleep four.有了这张折叠沙发,公寓里可以睡下4个人。
  • That new white convertible is totally awesome.那辆新的白色折篷汽车简直棒极了。
34 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
35 summarise summarise     
vt.概括,总结
参考例句:
  • I will summarise what I have done.我将概述我所做的事情。
  • Of course,no one article can summarise the complexities of china today.当然,没有哪一篇文章能概括出中国今日的复杂性。
36 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
37 atmospheric 6eayR     
adj.大气的,空气的;大气层的;大气所引起的
参考例句:
  • Sea surface temperatures and atmospheric circulation are strongly coupled.海洋表面温度与大气环流是密切相关的。
  • Clouds return radiant energy to the surface primarily via the atmospheric window.云主要通过大气窗区向地表辐射能量。
38 combustion 4qKzS     
n.燃烧;氧化;骚动
参考例句:
  • We might be tempted to think of combustion.我们也许会联想到氧化。
  • The smoke formed by their combustion is negligible.由它燃烧所生成的烟是可忽略的。
39 acting czRzoc     
n.演戏,行为,假装;adj.代理的,临时的,演出用的
参考例句:
  • Ignore her,she's just acting.别理她,她只是假装的。
  • During the seventies,her acting career was in eclipse.在七十年代,她的表演生涯黯然失色。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533