小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » The Power of Movement in Plants » CHAPTER III. SENSITIVENESS OF THE APEX OF THE RADICLE TO CONTACT AND TO OTHER IRRITANTS.
选择底色: 选择字号:【大】【中】【小】
CHAPTER III. SENSITIVENESS OF THE APEX OF THE RADICLE TO CONTACT AND TO OTHER IRRITANTS.
关注小说网官方公众号(noveltingroom),原版名著免费领。
   Manner in which radicles bend when they encounter an obstacle in the soil—
  Vicia faba, tips of radicles highly sensitive to contact and other
  irritants—Effects of too high a temperature—Power of discriminating1
  between objects attached on opposite sides—Tips of secondary radicles
  sensitive—Pisum, tips of radicles sensitive—Effects of such sensitiveness
  in overcoming geotropism—Secondary radicles—Phaseolus, tips of radicles
  hardly sensitive to contact, but highly sensitive to caustic2 and to the
  removal of a slice—Tropaeolum—Gossypium—Cucurbita—Raphanus—Aesculus,
  tip not sensitive to slight contact, highly sensitive to caustic—Quercus,
  tip highly sensitive to contact—Power of discrimination—Zea, tip highly
  sensitive, secondary radicles—Sensitiveness of radicles to moist air—
  Summary of chapter.
IN order to see how the radicles of seedlings3 would pass over stones, roots, and other obstacles, which they must incessantly5 encounter in the soil, germinating6 beans (Vicia faba) were so placed that the tips of the radicles came into contact, almost rectangularly or at a high angle, with underlying7 plates of glass. In other cases the beans were turned about whilst their radicles were growing, so that they descended8 nearly vertically9 on their own smooth, almost flat, broad upper surfaces. The delicate root-cap, when it first touched any directly opposing surface, was a little flattened11 transversely; the flattening12 soon became oblique13, and in a few hours quite disappeared, the apex14 now pointing at right angles, or at nearly right angles, to its former course. The radicle then seemed to glide15 in its new direction over the surface which had opposed [page 130] it, pressing on it with very little force. How far such abrupt16 changes in its former course are aided by the circumnutation of the tip must be left doubtful. Thin slips of wood were cemented on more or less steeply inclined glass-plates, at right angles to the radicles which were gliding17 down them. Straight lines had been painted along the growing terminal part of some of these radicles, before they met the opposing slip of wood; and the lines became sensibly curved in 2 h. after the apex had come into contact with the slips. In one case of a radicle, which was growing rather slowly, the root-cap, after encountering a rough slip of wood at right angles, was at first slightly flattened transversely: after an interval18 of 2 h. 30 m. the flattening became oblique; and after an additional 3 hours the flattening had wholly disappeared, and the apex now pointed19 at right angles to its former course. It then continued to grow in its new direction alongside the slip of wood, until it came to the end of it, round which it bent20 rectangularly. Soon afterwards when coming to the edge of the plate of glass, it was again bent at a large angle, and descended perpendicularly23 into the damp sand.
 
When, as in the above cases, radicles encountered an obstacle at right angles to their course, the terminal growing part became curved for a length of between .3 and .4 of an inch (8-10 mm.), measured from the apex. This was well shown by the black lines which had been previously24 painted on them. The first and most obvious explanation of the curvature is, that it results merely from the mechanical resistance to the growth of the radicle in its original direction. Nevertheless, this explanation did not seem to us satisfactory. The radicles did not present the appearance of having been subjected to a sufficient pressure to account for [page 131] their curvature; and Sachs has shown* that the growing part is more rigid26 than the part immediately above which has ceased to grow, so that the latter might have been expected to yield and become curved as soon as the apex encountered an unyielding object; whereas it was the stiff growing part which became curved. Moreover, an object which yields with the greatest ease will deflect28 a radicle: thus, as we have seen, when the apex of the radicle of the bean encountered the polished surface of extremely thin tin-foil laid on soft sand, no impression was left on it, yet the radicle became deflected29 at right angles. A second explanation occurred to us, namely, that even the gentlest pressure might check the growth of the apex, and in this case growth could continue only on one side, and thus the radicle would assume a rectangular form; but this view leaves wholly unexplained the curvature of the upper part, extending for a length of 8-10 mm.
 
We were therefore led to suspect that the apex was sensitive to contact, and that an effect was transmitted from it to the upper part of the radicle, which was thus excited to bend away from the touching30 object. As a little loop of fine thread hung on a tendril or on the petiole of a leaf-climbing plant, causes it to bend, we thought that any small hard object affixed32 to the tip of a radicle, freely suspended and growing in damp air, might cause it to bend, if it were sensitive, and yet would not offer any mechanical resistance to its growth. Full details will be given of the experiments which were tried, as the result proved remarkable34. The fact of the apex of a radicle being sensitive to contact has never been observed, though, as we shall
 
* 'Arbeiten Bot. Inst. Würzburg,' Heft iii. 1873, p. 398.
 
[page 132] hereafter see, Sachs discovered that the radicle a little above the apex is sensitive, and bends like a tendril towards the touching object. But when one side of the apex is pressed by any object, the growing part bends away from the object; and this seems a beautiful adaptation for avoiding obstacles in the soil, and, as we shall see, for following the lines of least resistance. Many organs, when touched, bend in one fixed33 direction, such as the stamens of Berberis, the lobes35 of Dionaea, etc.; and many organs, such as tendrils, whether modified leaves or flower-peduncles, and some few stems, bend towards a touching object; but no case, we believe, is known of an organ bending away from a touching object.
 
Sensitiveness of the Apex of the Radicle of Vicia faba.—Common beans, after being soaked in water for 24 h., were pinned with the hilum downwards36 (in the manner followed by Sachs), inside the cork37 lids of glass-vessels38, which were half filled with water; the sides and the cork were well moistened, and light was excluded. As soon as the beans had protruded40 radicles, some to a length of less than a tenth of an inch, and others to a length of several tenths, little squares or oblongs of card were affixed to the short sloping sides of their conical tips. The squares therefore adhered obliquely41 with reference to the longitudinal axis42 of the radicle; and this is a very necessary precaution, for if the bits of card accidentally became displaced, or were drawn43 by the viscid matter employed so as to adhere parallel to the side of the radicle, although only a little way above the conical apex, the radicle did not bend in the peculiar44 manner which we are here considering. Squares of about the 1/20th of an inch (i.e. about 1 ? mm.), or oblong bits of nearly the same size, were found to [page 133] be the most convenient and effective. We employed at first ordinary thin card, such as visiting cards, or bits of very thin glass, and various other objects; but afterwards sand-paper was chiefly employed, for it was almost as stiff as thin card, and the roughened surface favoured its adhesion. At first we generally used very thick gum-water; and this of course, under the circumstances, never dried in the least; on the contrary, it sometimes seemed to absorb vapour, so that the bits of card became separated by a layer of fluid from the tip. When there was no such absorption and the card was not displaced, it acted well and caused the radicle to bend to the opposite side. I should state that thick gum-water by itself induces no action. In most cases the bits of card were touched with an extremely small quantity of a solution of shellac in spirits of wine, which had been left to evaporate until it was thick; it then set hard in a few seconds, and fixed the bits of card well. When small drops of the shellac were placed on the tips without any card, they set into hard little beads45, and these acted like any other hard object, causing the radicles to bend to the opposite side. Even extremely minute beads of the shellac occasionally acted in a slight degree, as will hereafter be described. But that it was the cards which chiefly acted in our many trials, was proved by coating one side of the tip with a little bit of goldbeaters' skin (which by itself hardly acts), and then fixing a bit of card to the skin with shellac which never came into contact with the radicle: nevertheless the radicle bent away from the attached card in the ordinary manner.
 
Some preliminary trials were made, presently to be described, by which the proper temperature was determined47, and then the following experiments were made. It should be premised that the beans were [page 134] always fixed to the cork-lids, for the convenience of manipulation, with the edge from which the radicle and plumule protrudes48, outwards49; and it must be remembered that owing to what we have called Sachs' curvature, the radicles, instead of growing perpendicularly downwards, often bend somewhat, even as much
 
Fig50. 65. Vicia faba: A, radicle beginning to bend from the attached little square of card; B, bent at a rectangle; C, bent into a circle or loop, with the tip beginning to bend downwards through the action of geotropism.
 
as about 45o inwards, or under the suspended bean. Therefore when a square of card was fixed to the apex in front, the bowing induced by it coincided with Sachs' curvature, and could be distinguished51 from it only by being more strongly pronounced or by occurring more quickly. To avoid this source of doubt, the squares [page 135] were fixed either behind, causing a curvature in direct opposition52 to that of Sachs', or more commonly to the right or left sides. For the sake of brevity, we will speak of the bits of card, etc., as fixed in front, or behind, or laterally54. As the chief curvature of the radicle is at a little distance from the apex, and as the extreme terminal and basal portions are nearly straight, it is possible to estimate in a rough manner the amount of curvature by an angle; and when it is said that the radicle became deflected at any angle from the perpendicular22, this implies that the apex was turned upwards55 by so many degrees from the downward direction which it would naturally have followed, and to the side opposite to that to which the card was affixed. That the reader may have a clear idea of the kind of movement excited by the bits of attached card, we append here accurate sketches56 of three germinating beans thus treated, and selected out of several specimens57 to show the gradations in the degrees of curvature. We will now give in detail a series of experiments, and afterwards a summary of the results.
 
[In the first 12 trials, little squares or oblongs of sanded card, 1.8 mm. in length, and 1.5 or only 0.9 mm. in breadth (i.e. .071 of an inch in length and .059 or .035 of an inch in breadth) were fixed with shellac to the tips of the radicles. In the subsequent trials the little squares were only occasionally measured, but were of about the same size.
 
(1.) A young radicle, 4 mm. in length, had a card fixed behind: after 9 h. deflected in the plane in which the bean is flattened, 50o from the perpendicular and from the card, and in opposition to Sachs' curvature: no change next morning, 23 h. from the time of attachment58.
 
(2.) Radicle 5.5 mm. in length, card fixed behind: after 9 h. deflected in the plane of the bean 20o from the perpendicular and from the card, and in opposition to Sachs' curvature: after 23 h. no change. [page 136]
 
(3.) Radicle 11 mm. in length, card fixed behind: after 9 h. deflected in the plane of the bean 40o from the perpendicular and from the card, and in opposition to Sachs' curvature. The tip of the radicle more curved than the upper part, but in the same plane. After 23 h. the extreme tip was slightly bent towards the card; the general curvature of the radicle remaining the same.
 
(4.) Radicle 9 mm. long, card fixed behind and a little laterally: after 9 h. deflected in the plane of the bean only about 7o or 8o from the perpendicular and from the card, in opposition to Sachs' curvature. There was in addition a slight lateral53 curvature directed partly from the card. After 23 h. no change.
 
(5.) Radicle 8 mm. long, card affixed almost laterally: after 9 h. deflected 30o from the perpendicular, in the plane of the bean and in opposition to Sachs' curvature; also deflected in a plane at right angles to the above one, 20o from the perpendicular: after 23 h. no change.
 
(6.) Radicle 9 mm. long, card affixed in front: after 9 h. deflected in the plane of the bean about 40o from the vertical10, away from the card and in the direction of Sachs' curvature. Here therefore we have no evidence of the card being the cause of the deflection, except that a radicle never moves spontaneously, as far as we have seen, as much as 40o in the course of 9 h. After 23 h. no change.
 
(7.) Radicle 7 mm. long, card affixed to the back: after 9 h. the terminal part of the radicle deflected in the plane of the bean 20o from the vertical, away from the card and in opposition to Sachs' curvature. After 22 h. 30 m. this part of the radicle had become straight.
 
(8.) Radicle 12 mm. long, card affixed almost laterally: after 9 h. deflected laterally in a plane at right angles to that of the bean between 40o and 50o from the vertical and from the card. In the plane of the bean itself the deflection amounted to 8o or 9o from the vertical and from the card, in opposition to Sachs' curvature. After 22 h. 30 m. the extreme tip had become slightly curved towards the card.
 
(9.) Card fixed laterally: after 11 h. 30 m. no effect, the radicle being still almost vertical.
 
(10.) Card fixed almost laterally: after 11 h. 30 m. deflected 90o from the vertical and from the card, in a plane intermediate between that of the bean itself and one at right [page 137] angles to it. Radicle consequently partially59 deflected from Sachs' curvature.
 
(11.) Tip of radicle protected with goldbeaters' skin, with a square of card of the usual dimensions affixed with shellac: after 11 h. greatly deflected in the plane of the bean, in the direction of Sachs' curvature, but to a much greater degree and in less time than ever occurs spontaneously.
 
(12.) Tip of radicle protected as in last case: after 11 h. no effect, but after 24 h. 40 m. radicle clearly deflected from the card. This slow action was probably due to a portion of the goldbeaters' skin having curled round and lightly touched the opposite side of the tip and thus irritated it.
 
(13.) A radicle of considerable length had a small square of card fixed with shellac to its apex laterally: after only 7 h. 15 m. a length of .4 of an inch from the apex, measured along the middle, was considerably60 curved from the side bearing the card.
 
(14.) Case like the last in all respects, except that a length of only .25 of an inch of the radicle was thus deflected.
 
(15.) A small square of card fixed with shellac to the apex of a young radicle; after 9 h. 15 m. deflected through 90o from the perpendicular and from the card. After 24 h. deflection much decreased, and after an additional day, reduced to 23o from the perpendicular.
 
(16.) Square of card fixed with shellac behind the apex of a radicle, which from its position having been changed during growth had become very crooked61; but the terminal portion was straight, and this became deflected to about 45o from the perpendicular and from the card, in opposition to Sachs' curvature.
 
(17.) Square of card affixed with shellac: after 8 h. radicle curved at right angles from the perpendicular and from the card. After 15 additional hours curvature much decreased.
 
(18.) Square of card affixed with shellac: after 8 h. no effect; after 23 h. 3 m. from time of affixing62, radicle much curved from the square. (19.) Square of card affixed with shellac: after 24 h. no effect, but the radicle had not grown well and seemed sickly.
 
(20.) Square of card affixed with shellac: after 24 h. no effect.
 
(21, 22.) Squares of card affixed with shellac: after 24 h. radicles of both curved at about 45o from the perpendicular and from the cards.
 
(23.) Square of card fixed with shellac to young radicle: after [page 138] 9 h. very slightly curved from the card; after 24 h. tip curved towards card. Refixed new square laterally, after 9 h. distinctly curved from the card, and after 24 h. curved at right angles from the perpendicular and from the card.
 
(24.) A rather large oblong piece of card fixed with shellac to apex: after 24 h. no effect, but the card was found not to be touching the apex. A small square was now refixed with shellac; after 16 h. slight deflection from the perpendicular and from the card. After an additional day the radicle became almost straight.
 
(25.) Square of card fixed laterally to apex of young radicle; after 9 h. deflection from the perpendicular considerable; after 24 h. deflection reduced. Refixed a fresh square with shellac: after 24 h. deflection about 40o from the perpendicular and from the card.
 
(26.) A very small square of card fixed with shellac to apex of young radicle: after 9 h. the deflection from the perpendicular and from the card amounted to nearly a right angle; after 24 h. deflection much reduced; after an additional 24 h. radicle almost straight.
 
(27.) Square of card fixed with shellac to apex of young radicle: after 9 h. deflection from the card and from the perpendicular a right angle; next morning quite straight. Refixed a square laterally with shellac; after 9 h. a little deflection, which after 24 h. increased to nearly 20o from the perpendicular and from the card.
 
(28.) Square of card fixed with shellac; after 9 h. some deflection; next morning the card dropped off; refixed it with shellac; it again became loose and was refixed; and now on the third trial the radicle was deflected after 14 h. at right angles from the card.
 
(29.) A small square of card was first fixed with thick gum-water to the apex. It produced a slight effect but soon fell off. A similar square was now affixed laterally with shellac: after 9 h. the radicle was deflected nearly 45o from the perpendicular and from the card. After 36 additional hours angle of deflection reduced to about 30o.
 
(30.) A very small piece, less than 1/20th of an inch square, of thin tin-foil fixed with shellac to the apex of a young radicle; after 24 h. no effect. Tin-foil removed, and a small square of sanded card fixed with shellac; after 9 h. deflection at nearly right angles from the perpendicular and from the card. Next [page 139] morning deflection reduced to about 40o from the perpendicular.
 
(31.) A splinter of thin glass gummed to apex, after 9 h. no effect, but it was then found not to be touching the apex of the radicle. Next morning a square of card was fixed with shellac to it, and after 9 h. radicle greatly deflected from the card. After two additional days the deflection had decreased and was only 35o from the perpendicular.
 
(32.) Small square of sanded card, attached with thick gum-water laterally to the apex of a long straight radicle: after 9 h. greatly deflected from the perpendicular and from the card. Curvature extended for a length of .22 of an inch from the apex. After 3 additional hours terminal portion deflected at right angles from the perpendicular. Next morning the curved portion was .36 in length.
 
(33.) Square of card gummed to apex: after 15 h. deflected at nearly 90o from the perpendicular and from the card.
 
(34.) Small oblong of sanded card gummed to apex: after 15 h. deflected 90o from the perpendicular and from the card: in the course of the three following days the terminal portion became much contorted and ultimately coiled into a helix.
 
(35.) Square of card gummed to apex: after 9 h. deflected from card: after 24 h. from time of attachment greatly deflected obliquely and partly in opposition to Sachs' curvature.
 
(36.) Small piece of card, rather less than 1/20th of an inch square, gummed to apex: in 9 h. considerably deflected from card and in opposition to Sachs' curvature; after 24 h. greatly deflected in the same direction. After an additional day the extreme tip was curved towards the card.
 
(37.) Square of card, gummed to apex in front, caused after 8 h. 30 m. hardly any effect; refixed fresh square laterally, after 15 h. deflected almost 90o from the perpendicular and from the card. After 2 additional days deflection much reduced.
 
(38.) Square of card gummed to apex: after 9 h. much deflection, which after 24 h. from time of fixing increased to nearly 90o. After an additional day terminal portion was curled into a loop, and on the following day into a helix.
 
(39.) Small oblong piece of card gummed to apex, nearly in front, but a little to one side; in 9 h. slightly deflected in the direction of Sachs' curvature, but rather obliquely, and to side opposite to card. Next day more curved in the same direction, and after 2 additional days coiled into a ring. [page 140]
 
(40.) Square of card gummed to apex: after 9 h. slightly curved from card; next morning radicle straight, and apex had grown beyond the card. Refixed another square laterally with shellac; in 9 h. deflected laterally, but also in the direction of Sachs' curvature. After 2 additional days' curvature considerably increased in the same direction.
 
(41.) Little square of tin-foil fixed with gum to one side of apex of a young and short radicle: after 15 h. no effect, but tin-foil had become displaced. A little square of card was now gummed to one side of apex, which after 8 h. 40 m. was slightly deflected; in 24 h. from the time of attachment deflected at 90o from the perpendicular and from the card; after 9 additional hours became hooked, with the apex pointing to the zenith. In 3 days from the time of attachment the terminal portion of the radicle formed a ring or circle.
 
(42.) A little square of thick letter-paper gummed to the apex of a radicle, which after 9 h. was deflected from it. In 24 h. from time when the paper was affixed the deflection much increased, and after 2 additional days it amounted to 50o from the perpendicular and from the paper.
 
(43.) A narrow chip of a quill63 was fixed with shellac to the apex of a radicle. After 9 h. no effect; after 24 h. moderate deflection, but now the quill had ceased to touch the apex. Removed quill and gummed a little square of card to apex, which after 8 h. caused slight deflection. On the fourth day from the first attachment of any object, the extreme tip was curved towards the card.
 
(44.) A rather long and narrow splinter of extremely thin glass, fixed with shellac to apex, it caused in 9 h. slight deflection, which disappeared in 24 h.; the splinter was then found not touching the apex. It was twice refixed, with nearly similar results, that is, it caused slight deflection, which soon disappeared. On the fourth day from the time of first attachment the tip was bent towards the splinter.]
 
From these experiments it is clear that the apex of the radicle of the bean is sensitive to contact, and that it causes the upper part to bend away from the touching object. But before giving a summary of the results, it will be convenient briefly64 to give a few other observations. Bits of very thin glass and little squares [page 141] of common card were affixed with thick gum-water to the tips of the radicles of seven beans, as a preliminary trial. Six of these were plainly acted on, and in two cases the radicles became coiled up into complete loops. One radicle was curved into a semi-circle in so short a period as 6 h. 10 m. The seventh radicle which was not affected65 was apparently66 sickly, as it became brown on the following day; so that it formed no real exception. Some of these trials were made in the early spring during cold weather in a sitting-room67, and others in a greenhouse, but the temperature was not recorded. These six striking cases almost convinced us that the apex was sensitive, but of course we determined to make many more trials. As we had noticed that the radicles grew much more quickly when subjected to considerable heat, and as we imagined that heat would increase their sensitiveness, vessels with germinating beans suspended in damp air were placed on a chimney-piece, where they were subjected during the greater part of the day to a temperature of between 69o and 72o F.; some, however, were placed in the hot-house where the temperature was rather higher. Above two dozen beans were thus tried; and when a square of glass or card did not act, it was removed, and a fresh one affixed, this being often done thrice to the same radicle. Therefore between five and six dozen trials were altogether made. But there was moderately distinct deflection from the perpendicular and from the attached object in only one radicle out of this large number of cases. In five other cases there was very slight and doubtful deflection. We were astonished at this result, and concluded that we had made some inexplicable68 mistake in the first six experiments. But before finally relinquishing69 the subject, we resolved to make one [page 142] other trial for it occurred to us that sensitiveness is easily affected by external conditions, and that radicles growing naturally in the earth in the early spring would not be subjected to a temperature nearly so high as 70o F. We therefore allowed the radicles of 12 beans to grow at a temperature of between 55o and 60o F. The result was that in every one of these cases (included in the above-described experiments) the radicle was deflected in the course of a few hours from the attached object. All the above recorded successful trials, and some others presently to be given, were made in a sitting-room at the temperatures just specified70. It therefore appears that a temperature of about, or rather above, 70o F. destroys the sensitiveness of the radicles, either directly, or indirectly71 through abnormally accelerated growth; and this curious fact probably explains why Sachs, who expressly states that his beans were kept at a high temperature, failed to detect the sensitiveness of the apex of the radicle.
 
But other causes interfere72 with this sensibility. Eighteen radicles were tried with little squares of sanded card, some affixed with shellac and some with gum-water, during the few last days of 1878, and few first days of the next year. They were kept in a room at the proper temperature during the day, but were probably too cold at night, as there was a hard frost at the time. The radicles looked healthy but grew very slowly. The result was that only 6 out of the 18 were deflected from the attached cards, and this only to a slight degree and at a very slow rate. These radicles therefore presented a striking contrast with the 44 above described. On March 6th and 7th, when the temperature of the room varied73 between 53o and 59o F., eleven germinating beans were tried in the [page 143] same manner, and now every one of the radicles became curved away from the cards, though one was only slightly deflected. Some horticulturists believe that certain kinds of seeds will not germinate74 properly in the middle of the winter, although kept at a right temperature. If there really is any proper period for the germination75 of the bean, the feeble degree of sensibility of the above radicles may have resulted from the trial having been made in the middle of the winter, and not simply from the nights being too cold. Lastly, the radicles of four beans, which from some innate76 cause germinated77 later than all the others of the same lot, and which grew slowly though appearing healthy, were similarly tried, and even after 24 h. they were hardly at all deflected from the attached cards. We may therefore infer that any cause which renders the growth of the radicles either slower or more rapid than the normal rate, lessens78 or annuls79 the sensibility of their tips to contact. It deserves particular attention that when the attached objects failed to act, there was no bending of any kind, excepting Sachs' curvature. The force of our evidence would have been greatly weakened if occasionally, though rarely, the radicles had become curved in any direction independently of the attached objects. In the foregoing numbered paragraphs, however, it may be observed that the extreme tip sometimes becomes, after a considerable interval of time, abruptly80 curved towards the bit of card; but this is a totally distinct phenomenon, as will presently be explained.
 
A Summary of the Results of the foregoing Experiments on the Radicles of Vicia faba.—Altogether little squares (about 1/20th of an inch), generally of sanded paper as stiff as thin card (between .15 and .20 mm. in thickness), sometimes of ordinary card, or little frag- [page 144] ments of very thin glass etc., were affixed at different times to one side of the conical tips of 55 radicles. The 11 last-mentioned cases, but not the preliminary ones, are here included. The squares, etc., were most commonly affixed with shellac, but in 19 cases with thick gum-water. When the latter was used, the squares were sometimes found, as previously stated, to be separated from the apex by a layer of thick fluid, so that there was no contact, and consequently no bending of the radicle; and such few cases were not recorded. But in every instance in which shellac was employed, unless the square fell off very soon, the result was recorded. In several instances when the squares became displaced, so as to stand parallel to the radicle, or were separated by fluid from the apex, or soon fell off, fresh squares were attached, and these cases (described under the numbered paragraphs) are here included. Out of 55 radicles experimented on under the proper temperature, 52 became bent, generally to a considerable extent from the perpendicular, and away from the side to which the object was attached. Of the three failures, one can be accounted for, as the radicle became sickly on the following day; and a second was observed only during 11 h. 30 m. As in several cases the terminal growing part of the radicle continued for some time to bend from the attached object, it formed itself into a hook, with the apex pointing to the zenith, or even into a ring, and occasionally into a spire81 or helix. It is remarkable that these latter cases occurred more frequently when objects were attached with thick gum-water, which never became dry, than when shellac was employed. The curvature was often well-marked in from 7 h. to 11 h.; and in one instance a semicircle was formed in 6 h. 10 m, from the time [page 145] of attachment. But in order to see the phenomenon as well displayed as in the above described cases, it is indispensable that the bits of card, etc., should be made to adhere closely to one side of the conical apex; that healthy radicles should be selected and kept at not too high or too low a temperature, and apparently that the trials should not be made in the middle of the winter.
 
In ten instances, radicles which had curved away from a square of card or other object attached to their tips, straightened themselves to a certain extent, or even completely, in the course of from one to two days from the time of attachment. This was more especially apt to occur when the curvature was slight. But in one instance (No. 27) a radicle which in 9 h. had been deflected about 90o from the perpendicular, became quite straight in 24 h. from the period of attachment. With No. 26, the radicle was almost straight in 48 h. We at first attributed the straightening process to the radicles becoming accustomed to a slight stimulus82, in the same manner as a tendril or sensitive petiole becomes accustomed to a very light loop of thread, and unbends itself though the loop remains83 still suspended; but Sachs states* that radicles of the bean placed horizontally in damp air after curving downwards through geotropism, straighten themselves a little by growth along their lower or concave sides. Why this should occur is not clear: but perhaps it likewise occurred in the above ten cases. There is another occasional movement which must not be passed over: the tip of the radicle, for a length of from 2 to 3 mm., was found in six instances,
 
* 'Arbeiten Bot. Instit., Würzburg,' Heft iii. p. 456. [page 146]
 
after an interval of about 24 or more hours, bent towards the bit of still attached card,—that is, in a direction exactly opposite to the previously induced curvature of the whole growing part for a length of from 7 to 8 mm. This occurred chiefly when the first curvature was small, and when an object had been affixed more than once to the apex of the same radicle. The attachment of a bit of card by shellac to one side of the tender apex may sometimes mechanically prevent its growth; or the application of thick gum-water more than once to the same side may injure it; and then checked growth on this side with continued growth on the opposite and unaffected side would account for the reversed curvature of the apex.
 
Various trials were made for ascertaining84, as far as we could, the nature and degree of irritation85 to which the apex must be subjected, in order that the terminal growing part should bend away, as if to avoid the cause of irritation. We have seen in the numbered experiments, that a little square of rather thick letter-paper gummed to the apex induced, though slowly, considerable deflection. Judging from several cases in which various objects had been affixed with gum, and had soon become separated from the apex by a layer of fluid, as well as from some trials in which drops of thick gum-water alone had been applied86, this fluid never causes bending. We have also seen in the numbered experiments that narrow splinters of quill and of very thin glass, affixed with shellac, caused only a slight degree of deflection, and this may perhaps have been due to the shellac itself. Little squares of goldbeaters' skin, which is excessively thin, were damped, and thus made to adhere to one side of the tips of two radicles; one of these, after 24 h., produced no effect; nor did the [page 147] other in 8 h., within which time squares of card usually act; but after 24 h. there was slight deflection.
 
An oval bead46, or rather cake, of dried shellac, 1.01 mm. in length and 0.63 in breadth, caused a radicle to become deflected at nearly right angles in the course of only 6 h.; but after 23 h. it had nearly straightened itself. A very small quantity of dissolved shellac was spread over a bit of card, and the tips of 9 radicles were touched laterally with it; only two of them became slightly deflected to the side opposite to that bearing the speck87 of dried shellac, and they afterwards straightened themselves. These specks88 were removed, and both together weighed less than 1/100th of a grain; so that a weight of rather less than 1/200th of a grain (0.32 mg.) sufficed to excite movement in two out of the nine radicles. Here then we have apparently reached nearly the minimum weight which will act.
 
A moderately thick bristle89 (which on measurement was found rather flattened, being 0.33 mm. in one diameter, and 0.20 mm. in the other) was cut into lengths of about 1/20th of an inch. These after being touched with thick gum-water, were placed on the tips of eleven radicles. Three of them were affected; one being deflected in 8 h. 15 m. to an angle of about 90o from the perpendicular; a second to the same amount when looked at after 9 h.; but after 24 h. from the time of first attachment the deflection had decreased to only 19o; the third was only slightly deflected after 9 h., and the bit of bristle was then found not touching the apex; it was replaced, and after 15 additional hours the deflection amounted to 26o from the perpendicular. The remaining eight radicles were not at all acted on by the bits of bristle, so that we here appear to have nearly reached the minimum [page 148] of size of an object which will act on the radicle of the bean. But it is remarkable that when the bits of bristle did act, that they should have acted so quickly and efficiently90.
 
As the apex of a radicle in penetrating91 the ground must be pressed on all sides, we wished to learn whether it could distinguish between harder or more resisting, and softer substances. A square of the sanded paper, almost as stiff as card, and a square of extremely thin paper (too thin for writing on), of exactly the same size (about 1/20th of an inch), were fixed with shellac on opposite sides of the apices of 12 suspended radicles. The sanded card was between 0.15 and 0.20 mm. (or between 0.0059 and 0.0079 of an inch), and the thin paper only 0.045 mm. (or 0.00176 of an inch) in thickness. In 8 out of the 12 cases there could be no doubt that the radicle was deflected from the side to which the card-like paper was attached, and towards the opposite side, bearing the very thin paper. This occurred in some instances in 9 h., but in others not until 24 h. had elapsed. Moreover, some of the four failures can hardly be considered as really failures: thus, in one of them, in which the radicle remained quite straight, the square of thin paper was found, when both were removed from the apex, to have been so thickly coated with shellac that it was almost as stiff as the card: in the second case, the radicle was bent upwards into a semicircle, but the deflection was not directly from the side bearing the card, and this was explained by the two squares having become cemented laterally together, forming a sort of stiff gable, from which the radicle was deflected: in the third case, the square of card had been fixed by mistake in front, and though there was deflection from it, this might have been due to Sachs' curvature: [page 149] in the fourth case alone no reason could be assigned why the radicle had not been at all deflected. These experiments suffice to prove that the apex of the radicle possesses the extraordinary power of discriminating between thin card and very thin paper, and is deflected from the side pressed by the more resisting or harder substance.
 
Some trials were next made by irritating the tips without any object being left in contact with them. Nine radicles, suspended over water, had their tips rubbed, each six times with a needle, with sufficient force to shake the whole bean; the temperature was favourable92, viz. about 63o F. In 7 out of these cases no effect whatever was produced; in the eighth case the radicle became slightly deflected from, and in the ninth case slightly deflected towards, the rubbed side; but these two latter opposed curvatures were probably accidental, as radicles do not always grow perfectly93 straight downwards. The tips of two other radicles were rubbed in the same manner for 15 seconds with a little round twig94, two others for 30 seconds, and two others for 1 minute, but without any effect being produced. We may therefore conclude from these 15 trials that the radicles are not sensitive to temporary contact, but are acted on only by prolonged, though very slight, pressure.
 
We then tried the effects of cutting off a very thin slice parallel to one of the sloping sides of the apex, as we thought that the wound would cause prolonged irritation, which might induce bending towards the opposite side, as in the case of an attached object. Two preliminary trials were made: firstly, slices were cut from the radicles of 6 beans suspended in damp air, with a pair of scissors, which, though sharp, probably caused considerable crushing, and no curva- [page 150] ture followed. Secondly95, thin slices were cut with a razor obliquely off the tips of three radicles similarly suspended; and after 44 h. two were found plainly bent from the sliced surface; and the third, the whole apex of which had been cut off obliquely by accident, was curled upwards over the bean, but it was not clearly ascertained96 whether the curvature had been at first directed from the cut surface. These results led us to pursue the experiment, and 18 radicles, which had grown vertically downwards in damp air, had one side of their conical tips sliced off with a razor. The tips were allowed just to enter the water in the jars, and they were exposed to a temperature 14o - 16o C. (57o - 61o F.). The observations were made at different times. Three were examined 12 h. after being sliced, and were all slightly curved from the cut surface; and the curvature increased considerably after an additional 12 h. Eight were examined after 19 h.; four after 22 h. 30 m.; and three after 25 h. The final result was that out of the 18 radicles thus tried, 13 were plainly bent from the cut surface after the above intervals97 of time; and one other became so after an additional interval of 13 h. 30 m. So that only 4 out of the 18 radicles were not acted on. To these 18 cases the 3 previously mentioned ones should be added. It may, therefore, be concluded that a thin slice removed by a razor from one side of the conical apex of the radicle causes irritation, like that from an attached object, and induces curvature from the injured surface.
 
Lastly, dry caustic (nitrate of silver) was employed to irritate one side of the apex. If one side of the apex or of the whole terminal growing part of a radicle, is by any means killed or badly injured, the other side continues to grow; and this causes the part [page 151] to bend over towards the injured side.* But in the following experiments we endeavoured, generally with success, to irritate the tips on one side, without badly injuring them. This was effected by first drying the tip as far as possible with blotting-paper, though it still remained somewhat damp, and then touching it once with quite dry caustic. Seventeen radicles were thus treated, and were suspended in moist air over water at a temperature of 58o F. They were examined after an interval of 21 h. or 24h. The tips of two were found blackened equally all round, so that they could tell nothing and were rejected, 15 being left. Of these, 10 were curved from the side which had been touched, where there was a minute brown or blackish mark. Five of these radicles, three of which were already slightly deflected, were allowed to enter the water in the jar, and were re-examined after an additional interval of 27 h. (i.e. in 48 h. after the application of the caustic), and now four of them had become hooked, being bent from the discoloured side, with their points directed to the zenith; the fifth remained unaffected and straight. Thus 11 radicles out of the 15 were acted on. But the curvature of the four just described was so plain, that they alone would have sufficed to show that the radicles of the bean bend away from that side of the apex which has been slightly irritated by caustic.
 
The Power of an Irritant on the apex of the Radicle
 
* Ciesielski found this to be the case ('Untersuchungen über die Abwartskrümmung der Wurzel,' 1871, p. 28) after burning with heated platinum98 one side of a radicle. So did we when we painted longitudinally half of the whole length of 7 radicles, suspended over water, with a thick layer of grease, which is very injurious or even fatal to growing parts; for after 48 hours five of these radicles were curved towards the greased side, two remaining straight. [page 152]
 
of the Bean, compared with that of Geotropism.—We know that when a little square of card or other object is fixed to one side of the tip of a vertically dependent radicle, the growing part bends from it often into a semicircle, in opposition to geotropism, which force is conquered by the effect of the irritation from the attached object. Radicles were therefore extended horizontally in damp air, kept at the proper low temperature for full sensitiveness, and squares of card were affixed with shellac on the lower sides of their tips, so that if the squares acted, the terminal growing part would curve upwards. Firstly, eight beans were so placed that their short, young, horizontally extended radicles would be simultaneously99 acted on both by geotropism and by Sachs' curvature, if the latter came into play; and they all eight became bowed downwards to the centre of the earth in 20 h., excepting one which was only slightly acted on. Two of them were a little bowed downwards in only 5 h.! Therefore the cards, affixed to the lower sides of their tips, seemed to produce no effect; and geotropism easily conquered the effects of the irritation thus caused. Secondly, 5 oldish radicles, 1 ? inch in length, and therefore less sensitive than the above-mentioned young ones, were similarly placed and similarly treated. From what has been seen on many other occasions, it may be safely inferred that if they had been suspended vertically they would have bent away from the cards; and if they had been extended horizontally, without cards attached to them, they would have quickly bent vertically downwards through geotropism; but the result was that two of these radicles were still horizontal after 23 h.; two were curved only slightly, and the fifth as much as 40o beneath the horizon. Thirdly, 5 beans were fastened [page 153] with their flat surfaces parallel to the cork-lid, so that Sachs' curvature would not tend to make the horizontally extended radicles turn either upwards or downwards, and little squares of card were affixed as before, to the lower sides of their tips. The result was that all five radicles were bent down, or towards the centre of the earth, after only 8 h. 20 m. At the same time and within the same jars, 3 radicles of the same age, with squares affixed to one side, were suspended vertically; and after 8 h. 20 m. they were considerably deflected from the cards, and therefore curved upwards in opposition to geotropism. In these latter cases the irritation from the squares had over-powered geotropism; whilst in the former cases, in which the radicles were extended horizontally, geotropism had overpowered the irritation. Thus within the same jars, some of the radicles were curving upwards and others downwards at the same time—these opposite movements depending on whether the radicles, when the squares were first attached to them, projected vertically down, or were extended horizontally. This difference in their behaviour seems at first inexplicable, but can, we believe, be simply explained by the difference between the initial power of the two forces under the above circumstances, combined with the well-known principle of the after-effects of a stimulus. When a young and sensitive radicle is extended horizontally, with a square attached to the lower side of the tip, geotropism acts on it at right angles, and, as we have seen, is then evidently more efficient than the irritation from the square; and the power of geotropism will be strengthened at each successive period by its previous action—that is, by its after-effects. On the other hand, when a square is affixed to a vertically dependent radicle, and the apex begins to [page 154] curve upwards, this movement will be opposed by geotropism acting100 only at a very oblique angle, and the irritation from the card will be strengthened by its previous action. We may therefore conclude that the initial power of an irritant on the apex of the radicle of the bean, is less than that of geotropism when acting at right angles, but greater than that of geotropism when acting obliquely on it.
 
Sensitiveness of the tips of the Secondary Radicles of the Bean to contact.—All the previous observations relate to the main or primary radicle. Some beans suspended to cork-lids, with their radicles dipping into water, had developed secondary or lateral radicles, which were afterwards kept in very damp air, at the proper low temperature for full sensitiveness. They projected, as usual, almost horizontally, with only a slight downward curvature, and retained this position during several days. Sachs has shown* that these secondary roots are acted on in a peculiar manner by geotropism, so that if displaced they reassume their former sub-horizontal position, and do not bend vertically downwards like the primary radicle. Minute squares of the stiff sanded paper were affixed by means of shellac (but in some instances with thick gum-water) to the tips of 39 secondary radicles of different ages, generally the uppermost ones. Most of the squares were fixed to the lower sides of the apex, so that if they acted the radicle would bend upwards; but some were fixed laterally, and a few on the upper side. Owing to the extreme tenuity of these radicles, it was very difficult to attach the square to the actual apex. Whether owing to this or some other circumstance, only nine of the squares induced any * 'Arbeiten Bot. Inst., Würzburg,' Heft iv. 1874, p. 605-617. [page 155]
 
curvature. The curvature amounted in some cases to about 45o above the horizon, in others to 90o, and then the tip pointed to the zenith. In one instance a distinct upward curvature was observed in 8 h. 15 m., but usually not until 24 h. had elapsed. Although only 9 out of 39 radicles were affected, yet the curvature was so distinct in several of them, that there could be no doubt that the tip is sensitive to slight contact, and that the growing part bends away from the touching object. It is possible that some secondary radicles are more sensitive than others; for Sachs has proved* the interesting fact that each individual secondary radicle possesses its own peculiar constitution.
 
Sensitiveness to contact of the Primary Radicle, a little above the apex, in the Bean (Vicia faba) and Pea (Pisum sativum).—The sensitiveness of the apex of the radicle in the previously described cases, and the consequent curvature of the upper part from the touching object or other source of irritation, is the more remarkable, because Sachs** has shown that pressure at the distance of a few millimeters above the apex causes the radicle to bend, like a tendril, towards the touching object. By fixing pins so that they pressed against the radicles of beans suspended vertically in damp air, we saw this kind of curvature; but rubbing the part with a twig or needle for a few minutes produced no effect. Haberlandt remarks,*** that these radicles in breaking through the seed-coats often rub and press against the ruptured101 edges, and consequently bend round them. As little squares of the card-like paper affixed with shellac to the tips were highly efficient in causing the radicles to bend away from them, similar pieces (of about 1/20th
 
* 'Arbeiten Bot. Instit., Würzburg,' Heft, iv. 1874, p. 620.
 
** Ibid. Heft iii. 1873, p. 437.
 
*** 'Die Schutzeinrichtungen der Keimpflanze,' 1877, p. 25. [page 156]
 
inch square, or rather less) were attached in the same manner to one side of the radicle at a distance of 3 or 4 mm. above the apex. In our first trial on 15 radicles no effect was produced. In a second trial on the same number, three became abruptly curved (but only one strongly) towards the card within 24 h. From these cases we may infer that the pressure from a bit of card affixed with shellac to one side above the apex, is hardly a sufficient irritant; but that it occasionally causes the radicle to bend like a tendril towards this side.
 
We next tried the effect of rubbing several radicles at a distance of 4 mm. from the apex for a few seconds with lunar caustic (nitrate of silver); and although the radicles had been wiped dry and the stick of caustic was dry, yet the part rubbed was much injured and a slight permanent depression was left. In such cases the opposite side continues to grow, and the radicle necessarily becomes bent towards the injured side. But when a point 4 mm. from the apex was momentarily touched with dry caustic, it was only faintly discoloured, and no permanent injury was caused. This was shown by several radicles thus treated straightening themselves after one or two days; yet at first they became curved towards the touched side, as if they had been there subjected to slight continued pressure. These cases deserve notice, because when one side of the apex was just touched with caustic, the radicle, as we have seen, curved itself in an opposite direction, that is, away from the touched side.
 
The radicle of the common pea at a point a little above the apex is rather more sensitive to continued pressure than that of the bean, and bends towards the pressed side.* We experimented on a variety (York-
 
* Sachs, 'Arbeiten Bot. Institut., Würzburg,' Heft iii. p. 438. [page 157]
 
shire Hero) which has a much wrinkled tough skin, too large for the included cotyledons; so that out of 30 peas which had been soaked for 24 h. and allowed to germinate on damp sand, the radicles of three were unable to escape, and were crumpled102 up in a strange manner within the skin; four other radicles were abruptly bent round the edges of the ruptured skin against which they had pressed. Such abnormalities would probably never, or very rarely, occur with forms developed in a state of nature and subjected to natural selection. One of the four radicles just mentioned in doubling backwards103 came into contact with the pin by which the pea was fixed to the cork-lid; and now it bent at right angles round the pin, in a direction quite different from that of the first curvature due to contact with the ruptured skin; and it thus afforded a good illustration of the tendril-like sensitiveness of the radicle a little above the apex.
 
Little squares of the card-like paper were next affixed to radicles of the pea at 4 mm. above the apex, in the same manner as with the bean. Twenty-eight radicles suspended vertically over water were thus treated on different occasions, and 13 of them became curved towards the cards. The greatest degree of curvature amounted to 62o from the perpendicular; but so large an angle was only once formed. On one occasion a slight curvature was perceptible after 5 h. 45 m., and it was generally well-marked after 14 h. There can therefore be no doubt that with the pea, irritation from a bit of card attached to one side of the radicle above the apex suffices to induce curvature.
 
Squares of card were attached to one side of the tips of 11 radicles within the same jars in which the above trials were made, and five of them became plainly, and one slightly, curved away from this side. Other [page 158] analogous104 cases will be immediately described. The fact is here mentioned because it was a striking spectacle, showing the difference in the sensitiveness of the radicle in different parts, to behold105 in the same jar one set of radicles curved away from the squares on their tips, and another set curved towards the squares attached a little higher up. Moreover, the kind of curvature in the two cases is different. The squares attached above the apex cause the radicle to bend abruptly, the part above and beneath remaining nearly straight; so that here there is little or no transmitted effect. On the other hand, the squares attached to the apex affect the radicle for a length of from about 4 to even 8 mm., inducing in most cases a symmetrical curvature; so that here some influence is transmitted from the apex for this distance along the radicle.
 
Pisum sativum (var. Yorkshire Hero): Sensitiveness of the apex of the Radicle.—Little squares of the same card-like paper were affixed (April 24th) with shellac to one side of the apex of 10 vertically suspended radicles: the temperature of the water in the bottom of the jars was 60o - 61o F. Most of these radicles were acted on in 8 h. 30 m.; and eight of them became in the course of 24 h. conspicuously107, and the remaining two slightly, deflected from the perpendicular and from the side bearing the attached squares. Thus all were acted on; but it will suffice to describe two conspicuous106 cases. In one the terminal portion of the radicle was bent at right angles (A, Fig. 66) after 24h.; and in the other (B) it had by this time become hooked, with the apex pointing to the zenith. The two bits of card here used were .07 inch in length and .04 inch in breadth. Two other radicles, which after 8 h. 30 m. were moderately deflected, became straight again after 24h. Another [page 159] trial was made in the same manner with 15 radicles; but from circumstances, not worth explaining, they were only once and briefly examined after the short
 
Fig. 66. Pisum sativum: deflection produced within 24 hours in the growth of vertically dependent radicles, by little squares of card affixed with shellac to one side of apex: A, bent at right angles; B, hooked.
 
interval of 5 h. 30 m.; and we merely record in our notes "almost all bent slightly from the perpendicular, and away from the squares; the deflection amounting in one or two instances to nearly a rectangle." These two sets of cases, especially the first one, prove that the apex of the radicle is sensitive to slight contact and that the upper part bends from the touching object. Nevertheless, on June 1st and 4th, 8 other radicles were tried in the same manner at a temperature of 58o - 60o F., and after 24 h. only 1 was decidedly bent from the card, 4 slightly, 2 doubtfully, and 1 not in the least. The amount of curvature was unaccountably small; but all the radicles which were at all bent, were bent away from the cards.
 
We now tried the effects of widely different temperatures on the sensitiveness of these radicles with squares [page 160] of card attached to their tips. Firstly, 13 peas, most of them having very short and young radicles, were placed in an ice-box, in which the temperature rose during three days from 44o to 47o F. They grew slowly, but 10 out of the 13 became in the course of the three days very slightly curved from the squares; the other 3 were not affected; so that this temperature was too low for any high degree of sensitiveness or for much movement. Jars with 13 other radicles were next placed on a chimney-piece, where they were subjected to a temperature of between 68o and 72o F., and after 24 h., 4 were conspicuously curved from the cards, 2 slightly, and 7 not at all; so that this temperature was rather too high. Lastly 12 radicles were subjected to a temperature varying between 72o and 85o F., and none of them were in the least affected by the squares. The above several trials, especially the first recorded one, indicate that the most favourable temperature for the sensitiveness of the radicle of the pea is about 60o F.
 
The tips of 6 vertically dependent radicles were touched once with dry caustic, in the manner described under Vicia faba. After 24 h. four of them were bent from the side bearing a minute black mark; and the curvature increased in one case after 38 h., and in another case after 48 h., until the terminal part projected almost horizontally. The two remaining radicles were not affected.
 
With radicles of the bean, when extended horizontally in damp air, geotropism always conquered the effects of the irritation caused by squares of card attached to the lower sides of their tips. A similar experiment was tried on 13 radicles of the pea; the squares being attached with shellac, and the temperature between 58o - 60o F. The result was somewhat different; for [page 161] these radicles are either less strongly acted on by geotropism, or, what is more probable, are more sensitive to contact. After a time geotropism always prevailed, but its action was often delayed; and in three instances there was a most curious struggle between geotropism and the irritation caused by the cards. Four of the 13 radicles were a little curved downwards within 6 or 8 h., always reckoning from the time when the squares were first attached, and after 23 h. three of them pointed vertically downwards, and the fourth at an angle of 45o beneath the horizon. These four radicles therefore did not seem
 
Fig. 67. Pisum sativum: a radicle extended horizontally in damp air with a little square of card affixed to the lower side of its tip, causing it to bend upwards in opposition to geotropism. The deflection of the radicle after 21 hours is shown at A, and of the same radicle after 45 hours at B, now forming a loop.
 
to have been at all affected by the attached squares. Four others were not acted on by geotropism within the first 6 or 8 h., but after 23 h. were much bowed down. Two others remained almost horizontal for 23 h., but afterwards were acted on. So that in these latter six cases the action of geotropism was much delayed. The eleventh radicle was slightly curved down after 8 h., but when looked at again after 23 h. the terminal portion was curved upwards; if it had [page 162] been longer observed, the tip no doubt would have been found again curved down, and it would have formed a loop as in the following case. The twelfth radicle after 6 h. was slightly curved downwards; but when looked at again after 21 h., this curvature had disappeared and the apex pointed upwards; after 30 h. the radicle formed a hook, as shown at A (Fig. 67); which hook after 45 h. was converted into a loop (B). The thirteenth radicle after 6 h. was slightly curved downwards, but within 21 h. had curved considerably up, and then down again at an angle of 45o beneath the horizon, afterwards becoming perpendicular. In these three last cases geotropism and the irritation caused by the attached squares alternately prevailed in a highly remarkable manner; geotropism being ultimately victorious110.
 
Similar experiments were not always quite so successful as in the above cases. Thus 6 radicles, horizontally extended with attached squares, were tried on June 8th at a proper temperature, and after 7 h. 30 m. none were in the least curved upwards and none were distinctly geotropic; whereas of 6 radicles without any attached squares, which served as standards of comparison or controls, 3 became slightly and 3 almost rectangularly geotropic within the 7 h. 30 m.; but after 23 h. the two lots were equally geotropic. On July 10th another trial was made with 6 horizontally extended radicles, with squares attached in the same manner beneath their tips; and after 7 h. 30 m., 4 were slightly geotropic, 1 remained horizontal, and 1 was curved upwards in opposition to gravity or geotropism. This latter radicle after 48 h. formed a loop, like that at B (Fig. 67).
 
An analogous trial was now made, but instead of attaching squares of card to the lower sides of the [page 163] tips, these were touched with dry caustic. The details of the experiment will be given in the chapter on Geotropism, and it will suffice here to say that 10 peas, with radicles extended horizontally and not cauterised, were laid on and under damp friable111 peat; these, which served as standards or controls, as well as 10 others which had been touched on the upper side with the caustic, all became strongly geotropic in 24 h. Nine radicles, similarly placed, had their tips touched on the lower side with the caustic; and after 24 h., 3 were slightly geotropic, 2 remained horizontal, and 4 were bowed upwards in opposition to gravity and to geotropism. This upward curvature was distinctly visible in 8 h. 45m. after the lower sides of the tips had been cauterised.
 
Little squares of card were affixed with shellac on two occasions to the tips of 22 young and short secondary radicles, which had been emitted from the primary radicle whilst growing in water, but were now suspended in damp air. Besides the difficulty of attaching the squares to such finely pointed objects as were these radicles, the temperature was too high,—varying on the first occasion from 72o to 77o F., and on the second being almost steadily112 78o F.; and this probably lessened113 the sensitiveness of the tips. The result was that after an interval of 8 h. 30 m., 6 of the 22 radicles were bowed upwards (one of them greatly) in opposition to gravity, and 2 laterally; the remaining 14 were not affected. Considering the unfavourable circumstances, and bearing in mind the case of the bean, the evidence appears sufficient to show that the tips of the secondary radicles of the pea are sensitive to slight contact.
 
Phaseolus multiflorus: Sensitiveness of the apex of the Radicle.— Fifty-nine radicles were tried with squares [page 164] of various sizes of the same card-like paper, also with bits of thin glass and rough cinders114, affixed with shellac to one side of the apex. Rather large drops of the dissolved shellac were also placed on them and allowed to set into hard beads. The specimens were subjected to various temperatures between 60o and 72o F., more commonly at about the latter. But out of this considerable number of trials only 5 radicles were plainly bent, and 8 others slightly or even doubtfully, from the attached objects; the remaining 46 not being at all affected. It is therefore clear that the tips of the radicles of this Phaseolus are much less sensitive to contact than are those of the bean or pea. We thought that they might be sensitive to harder pressure, but after several trials we could not devise any method for pressing harder on one side of the apex than on the other, without at the same time offering mechanical resistance to its growth. We therefore tried other irritants.
 
The tips of 13 radicles, dried with blotting-paper, were thrice touched or just rubbed on one side with dry nitrate of silver. They were rubbed thrice, because we supposed from the foregoing trials, that the tips were not highly sensitive. After 24 h. the tips were found greatly blackened; 6 were blackened equally all round, so that no curvature to any one side could be expected; 6 were much blackened on one side for a length of about 1/10th of an inch, and this length became curved at right angles towards the blackened surface, the curvature afterwards increasing in several instances until little hooks were formed. It was manifest that the blackened side was so much injured that it could not grow, whilst the opposite side continued to grow. One alone out of these 13 radicles became curved from the blackened side, the [page 165] curvature extending for some little distance above the apex.
 
After the experience thus gained, the tips of six almost dry radicles were once touched with the dry caustic on one side; and after an interval of 10 m. were allowed to enter water, which was kept at a temperature of 65o - 67o F. The result was that after an interval of 8 h. a minute blackish speck could just be distinguished on one side of the apex of five of these radicles, all of which became curved towards the opposite side—in two cases at about an angle of 45o—in two other cases at nearly a rectangle— and in the fifth case at above a rectangle, so that the apex was a little hooked; in this latter case the black mark was rather larger than in the others. After 24 h. from the application of the caustic, the curvature of three of these radicles (including the hooked one) had diminished; in the fourth it remained the same, and in the fifth it had increased, the tip being now hooked. It has been said that after 8 h. black specks could be seen on one side of the apex of five of the six radicles; on the sixth the speck, which was extremely minute, was on the actual apex and therefore central; and this radicle alone did not become curved. It was therefore again touched on one side with caustic, and after 15 h. 30 m. was found curved from the perpendicular and from the blackened side at an angle of 34o, which increased in nine additional hours to 54o.
 
It is therefore certain that the apex of the radicle of this Phaseolus is extremely sensitive to caustic, more so than that of the bean, though the latter is far more sensitive to pressure. In the experiments just given, the curvature from the slightly cauterised side of the tip, extended along the radicle for a length of nearly 10 mm.; whereas in the first set [page 166] of experiments, when the tips of several were greatly blackened and injured on one side, so that their growth was arrested, a length of less than 3 mm. became curved towards the much blackened side, owing to the continued growth of the opposite side. This difference in the results is interesting, for it shows that too strong an irritant does not induce any transmitted effect, and does not cause the adjoining, upper and growing part of the radicle to bend. We have analogous cases with Drosera, for a strong solution of carbonate of ammonia when absorbed by the glands115, or too great heat suddenly applied to them, or crushing them, does not cause the basal part of the tentacles116 to bend, whilst a weak solution of the carbonate, or a moderate heat, or slight pressure always induced such bending. Similar results were observed with Dionaea and Pinguicula.
 
The effect of cutting off with a razor a thin slice from one side of the conical apex of 14 young and short radicles was next tried. Six of them after being operated on were suspended in damp air; the tips of the other eight, similarly suspended, were allowed to enter water at a temperature of about 65o F. It was recorded in each case which side of the apex had been sliced off, and when they were afterwards examined the direction of the curvature was noted117, before the record was consulted. Of the six radicles in damp air, three had their tips curved after an interval of 10 h. 15 m. directly away from the sliced surface, whilst the other three were not affected and remained straight; nevertheless, one of them after 13 additional hours became slightly curved from the sliced surface. Of the eight radicles with their tips immersed in water, seven were plainly curved away from the sliced surfaces after 10 h. 15 m.; and with [page 167] respect to the eighth which remained quite straight, too thick a slice had been accidentally removed, so that it hardly formed a real exception to the general result. When the seven radicles were looked at again, after an interval of 23 h. from the time of slicing, two had become distorted; four were deflected at an angle of about 70o from the perpendicular and from the cut surface; and one was deflected at nearly 90o, so that it projected almost horizontally, but with the extreme tip now beginning to bend downwards through the action of geotropism. It is therefore manifest that a thin slice cut off one side of the conical apex, causes the upper growing part of the radicle of this Phaseolus to bend, through the transmitted effects of the irritation, away from the sliced surface.
 
Tropaeolum majus: Sensitiveness of the apex of the Radicle to contact.— Little squares of card were attached with shellac to one side of the tips of 19 radicles, some of which were subjected to 78o F., and others to a much lower temperature. Only 3 became plainly curved from the squares, 5 slightly, 4 doubtfully, and 7 not at all. These seeds were, as we believed, old, so we procured118 a fresh lot, and now the results were widely different. Twenty-three were tried in the same manner; five of the squares produced no effect, but three of these cases were no real exceptions, for in two of them the squares had slipped and were parallel to the apex, and in the third the shellac was in excess and had spread equally all round the apex. One radicle was deflected only slightly from the perpendicular and from the card; whilst seventeen were plainly deflected. The angles in several of these latter cases varied between 40o and 65o from the perpendicular; and in two of them it amounted after 15 h. or 16 h. to about 90o. In one instance a loop [page 168] was nearly completed in 16 h. There can, therefore, be no doubt that the apex is highly sensitive to slight contact, and that the upper part of the radicle bends away from the touching object.
 
Gossypium herbaceum: Sensitiveness of the apex of the Radicle.—Radicles were experimented on in the same manner as before, but they proved ill-fitted for our purpose, as they soon became unhealthy when suspended in damp air. Of 38 radicles thus suspended, at temperatures varying from 66o to 69o F., with squares of card attached to their tips, 9 were plainly and 7 slightly or even doubtfully deflected from the squares and from the perpendicular; 22 not being affected. We thought that perhaps the above temperature was not high enough, so 19 radicles with attached squares, likewise suspended in damp air, were subjected to a temperature of from 74o to 79o F., but not one of them was acted on, and they soon became unhealthy. Lastly, 19 radicles were suspended in water at a temperature from 70o to 75o F., with bits of glass or squares of the card attached to their tips by means of Canada-balsam or asphalte, which adhered rather better than shellac beneath the water. The radicles did not keep healthy for long. The result was that 6 were plainly and 2 doubtfully deflected from the attached objects and the perpendicular; 11 not being affected. The evidence consequently is hardly conclusive119, though from the two sets of cases tried under a moderate temperature, it is probable that the radicles are sensitive to contact; and would be more so under favourable conditions.
 
Fifteen radicles which had germinated in friable peat were suspended vertically over water. Seven of them served as controls, and they remained quite straight during 24 h. The tips of the other eight radicles [page 169] were just touched with dry caustic on one side. After only 5 h. 10 m. five of them were slightly curved from the perpendicular and from the side bearing the little blackish marks. After 8 h. 40 m., 4 out of these 5 were deflected at angles between 15o and 65o from the perpendicular. On the other hand, one which had been slightly curved after 5 h. 10 m., now became straight. After 24 h. the curvature in two cases had considerably increased; also in four other cases, but these latter radicles had now become so contorted, some being turned upwards, that it could no longer be ascertained whether they were still curved from the cauterised side. The control specimens exhibited no such irregular growth, and the two sets presented a striking contrast. Out of the 8 radicles which had been touched with caustic, two alone were not affected, and the marks left on their tips by the caustic were extremely minute. These marks in all cases were oval or elongated121; they were measured in three instances, and found to be of nearly the same size, viz. 2/3 of a mm. in length. Bearing this fact in mind, it should be observed that the length of the curved part of the radicle, which had become deflected from the cauterised side in the course of 8 h. 40 m. was found to be in three cases 6, 7, and 9 mm.
 
Cucurbita ovifera: Sensitiveness of the apex of the Radicle.—The tips proved ill-fitted for the attachment of cards, as they are extremely fine and flexible. Moreover, owing to the hypocotyls being soon developed and becoming arched, the whole radicle is quickly displaced and confusion is thus caused. A large number of trials were made, but without any definite result, excepting on two occasions, when out of 23 radicles 10 were deflected from the attached squares [page 170] of card, and 13 were not acted on. Rather large squares, though difficult to affix31, seemed more efficient than very small ones.
 
We were much more successful with caustic; but in our first trial, 15 radicles were too much cauterised, and only two became curved from the blackened side; the others being either killed on one side, or blackened equally all round. In our next trial the dried tips of 11 radicles were touched momentarily with dry caustic, and after a few minutes were immersed in water. The elongated marks thus caused were never black, only brown, and about ? mm. in length, or even less. In 4 h. 30 m. after the cauterisation, 6 of them were plainly curved from the side with the brown mark, 4 slightly, and 1 not at all. The latter proved unhealthy, and never grew; and the marks on 2 of the 4 slightly curved radicles were excessively minute, one being distinguishable only with the aid of a lens. Of 10 control specimens tried in the same jars at the same time, not one was in the least curved. In 8 h. 40 m. after the cauterisation, 5 of the radicles out of the 10 (the one unhealthy one being omitted) were deflected at about 90o, and 3 at about 45o from the perpendicular and from the side bearing the brown mark. After 24 h. all 10 radicles had increased immensely in length; in 5 of them the curvature was nearly the same, in 2 it had increased, and in 3 it had decreased. The contrast presented by the 10 controls, after both the 8 h. 40 m. and the 24 h. intervals, was very great; for they had continued to grow vertically downwards, excepting two which, from some unknown cause, had become somewhat tortuous122.
 
In the chapter on Geotropism we shall see that 10 radicles of this plant were extended horizontally on and beneath damp friable peat, under which conditions [page 171] they grow better and more naturally than in damp air; and their tips were slightly cauterised on the lower side, brown marks about ? mm. in length being thus caused. Uncauterised specimens similarly placed became much bent downwards through geotropism in the course of 5 or 6 hours. After 8 h. only 3 of the cauterised ones were bowed downwards, and this in a slight degree; 4 remained horizontal; and 3 were curved upwards in opposition to geotropism and from the side bearing the brown mark. Ten other specimens had their tips cauterised at the same time and in the same degree, on the upper side; and this, if it produced any effect, would tend to increase the power of geotropism; and all these radicles were strongly bowed downwards after 8 h. From the several foregoing facts, there can be no doubt that the cauterisation of the tip of the radicle of this Cucurbita on one side, if done lightly enough, causes the whole growing part to bend to the opposite side. Raphanus sativus: Sensitiveness of the apex of the Radicle.—We here encountered many difficulties in our trials, both with squares of card and with caustic; for when seeds were pinned to a cork-lid, many of the radicles, to which nothing had been done, grew irregularly, often curving upwards, as if attracted by the damp surface above; and when they were immersed in water they likewise often grew irregularly. We did not therefore dare to trust our experiments with attached squares of card; nevertheless some of them seemed to indicate that the tips were sensitive to contact. Our trials with caustic generally failed from the difficulty of not injuring too greatly the extremely fine tips. Out of 7 radicles thus tried, one became bowed after 22 h. at an angle of 60o, a second at 40o, [page 172] and a third very slightly from the perpendicular and from the cauterised side.
 
Aesculus hippocastanum: Sensitiveness of the apex of the Radicle.—Bits of glass and squares of card were affixed with shellac or gum-water to the tips of 12 radicles of the horse-chestnut; and when these objects fell off, they were refixed; but not in a single instance was any curvature thus caused. These massive radicles, one of which was above 2 inches in length and .3 inch in diameter at its base, seemed insensible to so slight a stimulus as any small attached object. Nevertheless, when the apex encountered an obstacle in its downward course, the growing part became so uniformly and symmetrically curved, that its appearance indicated not mere25 mechanical bending, but increased growth along the whole convex side, due to the irritation of the apex.
 
That this is the correct view may be inferred from the effects of the more powerful stimulus of caustic. The bending from the cauterised side occurred much slower than in the previously described species, and it will perhaps be worth while to give our trials in detail.
 
[The seeds germinated in sawdust, and one side of the tips of the radicles were slightly rubbed once with dry nitrate of silver; and after a few minutes were allowed to dip into water. They were subjected to a rather varying temperature, generally between 52o and 58o F. A few cases have not been thought worth recording123, in which the whole tip was blackened, or in which the seedling4 soon became unhealthy.
 
(1.) The radicle was slightly deflected from the cauterised side in one day (i.e. 24 h.); in three days it stood at 60o from the perpendicular; in four days at 90o; on the fifth day it was curved up about 40o above the horizon; so that it had passed through an angle of 130o in the five days, and this was the greatest amount of curvature observed.
 
(2.) In two days radicle slightly deflected; after seven days [page 173] deflected 69o from the perpendicular and from the cauterised side; after eight days the angle amounted to nearly 90o.
 
(3.) After one day slight deflection, but the cauterised mark was so faint that the same side was again touched with caustic. In four days from the first touch deflection amounted to 78o, which in an additional day increased to 90o.
 
(4.) After two days slight deflection, which during the next three days certainly increased but never became great; the radicle did not grow well and died on the eighth day.
 
(5.) After two days very slight deflection; but this on the fourth day amounted to 56o from the perpendicular and from the cauterised side.
 
(6.) After three days doubtfully, but after four days certainly deflected from the cauterised side. On the fifth day deflection amounted to 45o from the perpendicular, and this on the seventh day increased to about 90o.
 
(7.) After two days slightly deflected; on the third day the deflection amounted to 25o from the perpendicular, and this did not afterwards increase.
 
(8.) After one day deflection distinct; on the third day it amounted to 44o, and on the fourth day to 72o from the perpendicular and the cauterised side.
 
(9.) After two days deflection slight, yet distinct; on the third day the tip was again touched on the same side with caustic and thus killed.
 
(10.) After one day slight deflection, which after six days increased to 50o from the perpendicular and the cauterised side.
 
(11.) After one day decided108 deflection, which after six days increased to 62o from the perpendicular and from the cauterised side.
 
(12.) After one day slight deflection, which on the second day amounted to 35o, on the fourth day to 50o, and the sixth day to 63o from the perpendicular and the cauterised side.
 
(13.) Whole tip blackened, but more on one side than the other; on the fourth day slightly, and on the sixth day greatly deflected from the more blackened side; the deflection on the ninth day amounted to 90o from the perpendicular.
 
(14.) Whole tip blackened in the same manner as in the last case: on the second day decided deflection from the more blackened side, which increased on the seventh day to nearly 90o; on the following day the radicle appeared unhealthy.
 
(15.) Here we had the anomalous124 case of a radicle bending [page 174] slightly towards the cauterised side on the first day, and continuing to do so for the next three days, when the deflection amounted to about 90o from the perpendicular. The cause appeared to lie in the tendril-like sensitiveness of the upper part of the radicle, against which the point of a large triangular125 flap of the seed-coats pressed with considerable force; and this irritation apparently conquered that from the cauterised apex.]
 
These several cases show beyond doubt that the irritation of one side of the apex, excites the upper part of the radicle to bend slowly towards the opposite side. This fact was well exhibited in one lot of five seeds pinned to the cork-lid of a jar; for when after 6 days the lid was turned upside down and viewed from directly above, the little black marks made by the caustic were now all distinctly visible on the upper sides of the tips of the laterally bowed radicles. A thin slice was shaved off with a razor from one side of the tips of 22 radicles, in the manner described under the common bean; but this kind of irritation did not prove very effective. Only 7 out of the 22 radicles became moderately deflected in from 3 to 5 days from the sliced surface, and several of the others grew irregularly. The evidence, therefore, is far from conclusive.
 
Quercus robur: Sensitiveness of the apex of the Radicle.—The tips of the radicles of the common oak are fully109 as sensitive to slight contact as are those of any plant examined by us. They remained healthy in damp air for 10 days, but grew slowly. Squares of the card-like paper were fixed with shellac to the tips of 15 radicles, and ten of these became conspicuously bowed from the perpendicular and from the squares; two slightly, and three not at all. But two of the latter were not real exceptions, as they were at first very short, and hardly grew afterwards. Some of the more [page 175] remarkable cases are worth describing. The radicles were examined on each successive morning, at nearly the same hour, that is, after intervals of 24 h.
 
[No. 1. This radicle suffered from a series of accidents, and acted in an anomalous manner, for the apex appeared at first insensible and afterwards sensitive to contact. The first square was attached on Oct 19th; on the 21st the radicle was not at all curved, and the square was accidentally knocked off; it was refixed on the 22nd, and the radicle became slightly curved from the square, but the curvature disappeared on the 23rd, when the square was removed and refixed. No curvature ensued, and the square was again accidentally knocked off, and refixed. On the morning of the 27th it was washed off by having reached the water in the bottom of the jar. The square was refixed, and on the 29th, that is, ten days after the first square had been attached, and two days after the attachment of the last square, the radicle had grown to the great length of 3.2 inches, and now the terminal growing part had become bent away from the square into a hook (see Fig. 68).
 
Fig. 68. Quercus robur: radicle with square of card attached to one side of apex, causing it to become hooked. Drawing one-half natural scale.
 
No. 2. Square attached on the 19th; on the 20th radicle slightly deflected from it and from the perpendicular; on the 21st deflected at nearly right angles; it remained during the next two days in this position, but on the 25th the upward curvature was lessened through the action of geotropism, and still more so on the 26th.
 
No. 3. Square attached on the 19th; on the 21st a trace of curvature from the square, which amounted on the 22nd to about 40o, and on the 23rd to 53o from the perpendicular.
 
No. 4. Square attached on the 21st; on the 22nd trace of curvature from the square; on the 23rd completely hooked with the point turned up to the zenith. Three days afterwards (i.e. 26th) the curvature had wholly disappeared and the apex pointed perpendicularly downwards.
 
No. 5. Square attached on the 21st; on the 22nd decided [page 176] though slight curvature from the square; on the 23rd the tip had curved up above the horizon, and on the 24th was hooked with the apex pointing almost to the zenith, as in Fig. 68.
 
No. 6. Square attached on the 21st; on the 22nd slightly curved from the square; 23rd more curved; 25th considerably curved; 27th all curvature lost, and the radicle was now directed perpendicularly downwards.
 
No. 7. Square attached on the 21st; on the 22nd a trace of curvature from the square, which increased next day, and on the 24th amounted to a right angle.
 
It is, therefore, manifest that the apex of the radicle of the oak is highly sensitive to contact, and retains its sensitiveness during several days. The movement thus induced was, however, slower than in any of the previous cases, with the exception of that of Aesculus. As with the bean, the terminal growing part, after bending, sometimes straightened itself through the action of geotropism, although the object still remained attached to the tip.
 
The same remarkable experiment was next tried, as in the case of the bean; namely, little squares of exactly the same size of the card-like sanded paper and of very thin paper (the thicknesses of which have been given under Vicia faba) were attached with shellac on opposite sides (as accurately126 as could be done) of the tips of 13 radicles, suspended in damp air, at a temperature of 65o - 66o F. The result was striking, for 9 out of these 13 radicles became plainly, and 1 very slightly, curved from the thick paper towards the side bearing the thin paper. In two of these cases the apex became completely hooked after two days; in four cases the deflection from the perpendicular and from the side bearing the thick paper, amounted in from two to four days to angles of 90o, 72o, 60o, and 49o, but in two other cases to only 18o and 15o. It should, however, be stated that in the [page 177] case in which the deflection was 49o, the two squares had accidentally come into contact on one side of the apex, and thus formed a lateral gable; and the deflection was directed in part from this gable and in part from the thick paper. In three cases alone the radicles were not affected by the difference in thickness of the squares of paper attached to their tips, and consequently did not bend away from the side bearing the stiffer paper.
 
Zea mays: Sensitiveness of the apex of the Radicle to contact.—A large number of trials were made on this plant, as it was the only monocotyledon on which we experimented. An abstract of the results will suffice. In the first place, 22 germinating seeds were pinned to cork-lids without any object being attached to their radicles, some being exposed to a temperature of 65o - 66o F., and others to between 74o and 79o; and none of them became curved, though some were a little inclined to one side. A few were selected, which from having germinated on sand were crooked, but when suspended in damp air the terminal part grew straight downwards. This fact having been ascertained, little squares of the card-like paper were affixed with shellac, on several occasions, to the tips of 68 radicles. Of these the terminal growing part of 39 became within 24 h. conspicuously curved away from the attached squares and from the perpendicular; 13 out of the 39 forming hooks with their points directed towards the zenith, and 8 forming loops. Moreover, 7 other radicles out of the 68, were slightly and two doubtfully deflected from the cards. There remain 20 which were not affected; but 10 of these ought not to be counted; for one was diseased, two had their tips quite surrounded by shellac, and the squares on 7 had slipped so as to stand parallel to the apex, instead of obliquely [page 178] on it. There were therefore only 10 out of the 68 which certainly were not acted on. Some of the radicles which were experimented on were young and short, most of them of moderate length, and two or three exceeded three inches in length. The curvature in the above cases occurred within 24 h., but it was often conspicuous within a much shorter period. For instance, the terminal growing part of one radicle was bent upwards into a rectangle in 8 h. 15 m., and of another in 9 h. On one occasion a hook was formed in 9 h. Six of the radicles in a jar containing nine seeds, which stood on a sand-bath, raised to a temperature varying from 76o to 82o F., became hooked, and a seventh formed a complete loop, when first looked at after 15 hours.
 
The accompanying figures of four germinating seeds (Fig. 69) show, firstly, a radicle (A) the apex of which has become so much bent away from the attached square as to form a hook. Secondly (B), a hook converted through the continued irritation of the card, aided perhaps by geotropism, into an almost complete circle or loop. The tip in the act of forming a loop generally rubs against the upper part of the radicle, and pushes off the attached square; the loop then contracts or closes, but never disappears; and the apex afterwards grows vertically downwards, being no longer irritated by any attached object. This frequently occurred, and is represented at C. The jar above mentioned with the six hooked radicles and another jar were kept for two additional days, for the sake of observing how the hooks would be modified. Most of them became converted into simple loops, like that figured at C; but in one case the apex did not rub against the upper part of the radicle and thus remove the card; and it consequently made, owing [page 179] to the continued irritation from the card, two complete loops, that is, a helix of two spires127; which afterwards became pressed closely together. Then geotropism prevailed and caused the apex to grow perpendicularly downwards. In another case, shown at (D), the apex
 
Fig. 69. Zea mays: radicles excited to bend away from the little squares of card attached to one side of their tips.
 
in making a second turn or spire, passed through the first loop, which was at first widely open, and in doing so knocked off the card; it then grew perpendicularly downwards, and thus tied itself into a knot, which soon became tight!
 
Secondary Radicles of Zea.—A short time after the first radicle has appeared, others protrude39 from the [page 180] seed, but not laterally from the primary one. Ten of these secondary radicles, which were directed obliquely downwards, were experimented on with very small squares of card attached with shellac to the lower sides of their tips. If therefore the squares acted, the radicles would bend upwards in opposition to gravity. The jar stood (protected from light) on a sand-bath, which varied between 76o and 82o F. After only 5 h. one appeared to be a little deflected from the square, and after 20 h. formed a loop. Four others were considerably curved from the squares after 20 h., and three of them became hooked, with their tips pointing to the zenith,—one after 29 h. and the two others after 44 h. By this latter time a sixth radicle had become bent at a right angle from the side bearing the square. Thus altogether six out of the ten secondary radicles were acted on, four not being affected. There can, therefore, be no doubt that the tips of these secondary radicles are sensitive to slight contact, and that when thus excited they cause the upper part to bend from the touching object; but generally, as it appears, not in so short a time as in the case of the first-formed radicle.
 
SENSITIVENESS OF THE TIP OF THE RADICLE TO MOIST AIR.
 
Sachs made the interesting discovery, a few years ago, that the radicles of many seedling plants bend towards an adjoining damp surface.* We shall here endeavour to show that this peculiar form of sensitiveness resides in their tips. The movement is directly the reverse of that excited by the irritants hitherto considered, which cause the growing part of the
 
* 'Arbeiten des Bot. Institut., in Würzburg,' vol. i. 1872, p. 209. [page 181]
 
radicle to bend away from the source of irritation. In our experiments we followed Sachs' plan, and sieves128 with seeds germinating in damp sawdust were suspended so that the bottom was generally inclined at 40o with the horizon. If the radicles had been acted on solely130 by geotropism, they would have grown out of the bottom of the sieve129 perpendicularly downwards; but as they were attracted by the adjoining damp surface they bent towards it and were deflected 50o from the perpendicular. For the sake of ascertaining whether the tip or the whole growing part of the radicle was sensitive to the moist air, a length of from 1 to 2 mm. was coated in a certain number of cases with a mixture of olive-oil and lamp-black. This mixture was made in order to give consistence to the oil, so that a thick layer could be applied, which would exclude, at least to a large extent, the moist air, and would be easily visible. A greater number of experiments than those which were actually tried would have been necessary, had not it been clearly established that the tip of the radicle is the part which is sensitive to various other irritants.
 
[Phaseolus multiflorus.—Twenty-nine radicles, to which nothing had been done, growing out of a sieve, were observed at the same time with those which had their tips greased, and for an equal length of time. Of the 29, 24 curved themselves so as to come into close contact with the bottom of the sieve. The place of chief curvature was generally at a distance of 5 or 6 mm. from the apex. Eight radicles had their tips greased for a length of 2 mm., and two others for a length of 1 ? mm.; they were kept at a temperature of 15o - 16o C. After intervals of from 19 h. to 24 h. all were still vertically or almost vertically dependent, for some of them had moved towards the adjoining damp surface by about 10o. They had therefore not been acted on, or only slightly acted on, by the damper air on one side, although the whole upper part was freely exposed. After 48 h. three of these radicles became [page 182] considerably curved towards the sieve; and the absence of curvature in some of the others might perhaps be accounted for by their not having grown very well. But it should be observed that during the first 19 h. to 24 h. all grew well; two of them having increased 2 and 3 mm. in length in 11 h.; five others increased 5 to 8 mm. in 19 h.; and two, which had been at first 4 and 6 mm. in length, increased in 24 h. to 15 and 20 mm.
 
The tips of 10 radicles, which likewise grew well, were coated with the grease for a length of only 1 mm., and now the result was somewhat different; for of these 4 curved themselves to the sieve in from 21 h. to 24h., whilst 6 did not do so. Five of the latter were observed for an additional day, and now all excepting one became curved to the sieve.
 
The tips of 5 radicles were cauterised with nitrate of silver, and about 1 mm. in length was thus destroyed. They were observed for periods varying between 11 h. and 24h., and were found to have grown well. One of them had curved until it came into contact with the sieve; another was curving towards it; whilst the remaining three were still vertically dependent. Of 7 not cauterised radicles observed at the same time, all had come into contact with the sieve.
 
The tips of 11 radicles were protected by moistened gold-beaters' skin, which adheres closely, for a length varying from 1 ? to 2 ? mm. After 22 h. to 24 h., 6 of these radicles were clearly bent towards or had come into contact with the sieve; 2 were slightly curved in this direction, and 3 not at all. All had grown well. Of 14 control specimens observed at the same time, all excepting one had closely approached the sieve. It appears from these cases that a cap of goldbeaters' skin checks, though only to a slight degree, the bending of the radicles to an adjoining damp surface. Whether an extremely thin sheet of this substance when moistened allows moisture from the air to pass through it, we do not know. One case indicated that the caps were sometimes more efficient than appears from the above results; for a radicle, which after 23 h. had only slightly approached the sieve, had its cap (1 ? mm. in length) removed, and during the next 15 ? h. it curved itself abruptly towards the source of moisture, the chief seat of curvature being at a distance of 2 to 3 mm. from the apex.
 
Vicia faba.—The tips of 13 radicles were coated with the grease for a length of 2 mm.; and it should be remembered that with these radicles the seat of chief curvature is about [page 183] 4 or 5 mm. from the apex. Four of them were examined after 22h., three after 26 h., and six after 36 h., and none had been attracted towards the damp lower surface of the sieve. In another trial 7 radicles were similarly treated, and 5 of them still pointed perpendicularly downwards after 11 h., whilst 2 were a little curved towards the sieve; by an accident they were not subsequently observed. In both these trials the radicles grew well; 7 of them, which were at first from 4 to 11 mm. in length, were after 11 h. between 7 and 16 mm.; 3 which were at first from 6 to 8 mm. after 26 h. were 11.5 to 18 mm. in length; and lastly, 4 radicles which were at first 5 to 8 mm. after 46 h. were 18 to 23 mm. in length. The control or ungreased radicles were not invariably attracted towards the bottom of the sieve. But on one occasion 12 out of 13, which were observed for periods between 22 h. and 36 h., were thus attracted. On two other occasions taken together, 38 out of 40 were similarly attracted. On another occasion only 7 out of 14 behaved in this manner, but after two more days the proportion of the curved increased to 17 out of 23. On a last occasion only 11 out of 20 were thus attracted. If we add up these numbers, we find that 78 out of 96 of the control specimens curved themselves towards the bottom of the sieve. Of the specimens with greased tips, 2 alone out of the 20 (but 7 of these were not observed for a sufficiently131 long time) thus curved themselves. We can, therefore, hardly doubt that the tip for a length of 2 mm. is the part which is sensitive to a moist atmosphere, and causes the upper part to bend towards its source.
 
The tips of 15 radicles were cauterised with nitrate of silver, and they grew as well as those above described with greased tips. After an interval of 24 h., 9 of them were not at all curved towards the bottom of the sieve; 2 were curved towards it at angles of 20o and 12o from their former vertical position, and 4 had come into close contact with it. Thus the destruction of the tip for a length of about 1 mm. prevented the curvature of the greater number of these radicles to the adjoining damp surface. Of 24 control specimens, 23 were bent to the sieve, and on a second occasion 15 out of 16 were similarly curved in a greater or less degree. These control trials are included in those given in the foregoing paragraph.
 
Avena sativa.—The tips of 13 radicles, which projected between 2 and 4 mm. from the bottom of the sieve, many of [page 184] them not quite perpendicularly downwards, were coated with the black grease for a length of from 1 to 1 ? mm. The sieves were inclined at 30o with the horizon. The greater number of these radicles were examined after 22 h., and a few after 25 h., and within these intervals they had grown so quickly as to have nearly doubled their lengths. With the ungreased radicles the chief seat of curvature is at a distance of not less than between 3.5 and 5.5 mm., and not more than between 7 and 10 mm. from the apex. Out of the 13 radicles with greased tips, 4 had not moved at all towards the sieve; 6 were deflected towards it and from the perpendicular by angles varying between 10o and 35o; and 3 had come into close contact with it. It appears, therefore, at first sight that greasing the tips of these radicles had checked but little their bending to the adjoining damp surface. But the inspection132 of the sieves on two occasions produced a widely different impression on the mind; for it was impossible to behold the radicles with the black greased tips projecting from the bottom, and all those with ungreased tips, at least 40 to 50 in number, clinging closely to it, and feel any doubt that the greasing had produced a great effect. On close examination only a single ungreased radicle could be found which had not become curved towards the sieve. It is probable that if the tips had been protected by grease for a length of 2 mm. instead of from 1 to 1 ? mm., they would not have been affected by the moist air and none would have become curved.
 
Triticum vulgare.—Analogous trials were made on 8 radicles of the common wheat; and greasing their tips produced much less effect than in the case of the oats. After 22 h., 5 of them had come into contact with the bottom of the sieve; 2 had moved towards it 10o and 15o, and one alone remained perpendicular. Not one of the very numerous ungreased radicles failed to come into close contact with the sieve. These trials were made on Nov. 28th, when the temperature was only 4.8o C. at 10 A.M. We should hardly have thought this case worth notice, had it not been for the following circumstance. In the beginning of October, when the temperature was considerably higher, viz., 12o to 13o C., we found that only a few of the ungreased radicles became bent towards the sieve; and this indicates that sensitiveness to moisture in the air is increased by a low temperature, as we have seen with the radicles of Vicia faba relatively133 to objects attached to their tips. But in the present instance it is possible that a difference in the dryness [page 185] of the air may have caused the difference in the results at the two periods.]
 
Finally, the facts just given with respect to Phaseolus multiflorus, Vicia faba, and Avena sativa show, as it seems to us, that a layer of grease spread for a length of 1 ? to 2 mm. over the tip of the radicle, or the destruction of the tip by caustic, greatly lessens or quite annuls in the upper and exposed part the power of bending towards a neighbouring source of moisture. We should bear in mind that the part which bends most, lies at some little distance above the greased or cauterised tip; and that the rapid growth of this part, proves that it has not been injured by the tips having been thus treated. In those cases in which the radicles with greased tips became curved, it is possible that the layer of grease was not sufficiently thick wholly to exclude moisture, or that a sufficient length was not thus protected, or, in the case of the caustic, not destroyed. When radicles with greased tips are left to grow for several days in damp air, the grease is drawn out into the finest reticulated threads and dots, with narrow portions of the surface left clean. Such portions would, it is probable, be able to absorb moisture, and thus we can account for several of the radicles with greased tips having become curved towards the sieve after an interval of one or two days. On the whole, we may infer that sensitiveness to a difference in the amount of moisture in the air on the two sides of a radicle resides in the tip, which transmits some influence to the upper part, causing it to bend towards the source of moisture. Consequently, the movement is the reverse of that caused by objects attached to one side of the tip, or by a thin slice being cut off, or by being slightly cauterised. In a future chapter it will be shown that sensitiveness to the attraction of [page 186] gravity likewise resides in the tip; so that it is the tip which excites the adjoining parts of a horizontally extended radicle to bend towards the centre of the earth.
 
SECONDARY RADICLES BECOMING VERTICALLY GEOTROPIC BY THE DESTRUCTION OR INJURY OF THE TERMINAL PART OF THE PRIMARY RADICLE.
 
Sachs has shown that the lateral or secondary radicles of the bean, and probably of other plants, are acted on by geotropism in so peculiar a manner, that they grow out horizontally or a little inclined downwards; and he has further shown* the interesting fact, that if the end of the primary radicle be cut off, one of the nearest secondary radicles changes its nature and grows perpendicularly downwards, thus replacing the primary radicle. We repeated this experiment, and planted beans with amputated radicles in friable peat, and saw the result described by Sachs; but generally two or three of the secondary radicles grew perpendicularly downwards. We also modified the experiment, by pinching young radicles a little way above their tips, between the arms of a U-shaped piece of thick leaden wire. The part pinched was thus flattened, and was afterwards prevented from growing thicker. Five radicles had their ends cut off, and served as controls or standards. Eight were pinched; of these 2 were pinched too severely134 and their ends died and dropped off; 2 were not pinched enough and were not sensibly affected; the remaining 4 were pinched sufficiently to check the growth of the terminal part, but did not appear otherwise injured. When the U-shaped wires were removed, after an
 
* 'Arbeiten Bot. Institut., Würzburg,' Heft iv. 1874, p. 622. [page 187]
 
interval of 15 days, the part beneath the wire was found to be very thin and easily broken, whilst the part above was thickened. Now in these four cases, one or more of the secondary radicles, arising from the thickened part just above the wire, had grown perpendicularly downwards. In the best case the primary radicle (the part below the wire being 1 ? inch in length) was somewhat distorted, and was not half as long as three adjoining secondary radicles, which had grown vertically, or almost vertically, downwards. Some of these secondary radicles adhered together or had become confluent. We learn from these four cases that it is not necessary, in order that a secondary radicle should assume the nature of a primary one, that the latter should be actually amputated; it is sufficient that the flow of sap into it should be checked, and consequently should be directed into the adjoining secondary radicles; for this seems to be the most obvious result of the primary radicle being pinched between the arms of a U-shaped wire.
 
This change in the nature of secondary radicles is clearly analogous, as Sachs has remarked, to that which occurs with the shoots of trees, when the leading one is destroyed and is afterwards replaced by one or more of the lateral shoots; for these now grow upright instead of sub-horizontally. But in this latter case the lateral shoots are rendered apogeotropic, whereas with radicles the lateral ones are rendered geotropic. We are naturally led to suspect that the same cause acts with shoots as with roots, namely, an increased flow of sap into the lateral ones. We made some trials with Abies communis and pectinata, by pinching with wire the leading and all the lateral shoots excepting one. But we believe that they were too old when experimented on; and some were pinched too severely, and [page 188] some not enough. Only one case succeeded, namely, with the spruce-fir. The leading shoot was not killed, but its growth was checked; at its base there were three lateral shoots in a whorl, two of which were pinched, one being thus killed; the third was left untouched. These lateral shoots, when operated on (July 14th) stood at an angle of 8o above the horizon; by Sept. 8th the unpinched one had risen 35o; by Oct. 4th it had risen 46o, and by Jan. 26th 48o, and it had now become a little curved inwards. Part of this rise of 48o may be attributed to ordinary growth, for the pinched shoot rose 12o within the same period. It thus follows that the unpinched shoot stood, on Jan. 26th, 56o above the horizon, or 34o from the vertical; and it was thus obviously almost ready to replace the slowly growing, pinched, leading shoot. Nevertheless, we feel some doubt about this experiment, for we have since observed with spruce-firs growing rather unhealthily, that the lateral shoots near the summit sometimes become highly inclined, whilst the leading shoot remains apparently sound.
 
A widely different agency not rarely causes shoots which naturally would have brown out horizontally to grow up vertically. The lateral branches of the Silver Fir (A. pectinata) are often affected by a fungus135, Aecidium elatinum, which causes the branch to enlarge into an oval knob formed of hard wood, in one of which we counted 24 rings of growth. According to De Bary*, when the mycelium penetrates137 a bud beginning to elongate120, the shoot developed from it grows vertically upwards. Such upright shoots after-
 
* See his valuable article in 'Bot. Zeitung,' 1867, p. 257, on these monstrous138 growths, which are called in German "Hexenbesen," or "witch-brooms." [page 189]
 
wards21 produce lateral and horizontal branches; and they then present a curious appearance, as if a young fir-tree had grown out of a ball of clay surrounding the branch. These upright shoots have manifestly changed their nature and become apogeotropic; for if they had not been affected by the Aecidium, they would have grown out horizontally like all the other twigs139 on the same branches. This change can hardly be due to an increased flow of sap into the part; but the presence of the mycelium will have greatly disturbed its natural constitution.
 
According to Mr. Meehan,* the stems of three species of Euphorbia and of Portulaca oleracea are "normally prostrate140 or procumbent;" but when they are attacked by an Aecidium, they "assume an erect141 habit." Dr. Stahl informs us that he knows of several analogous cases; and these seem to be closely related to that of the Abies. The rhizomes of Sparganium ramosum grow out horizontally in the soil to a considerable length, or are diageotropic; but F. Elfving found that when they were cultivated in water their tips turned upwards, and they became apogeotropic. The same result followed when the stem of the plant was bent until it cracked or was merely much bowed.**
 
No explanation has hitherto been attempted of such cases as the foregoing,- -namely, of secondary radicles growing vertically downwards, and of lateral shoots growing vertically upwards, after the amputation142 of
 
* 'Proc. Acad. Nat. Sc. Philadelphia,' June 16th, 1874, and July 23rd, 1875. ** See F. Elfving's interesting paper in 'Arbeiten Bot. Institut., in Würzburg,' vol. ii. 1880, p. 489. Carl Kraus (Triesdorf) had previously observed ('Flora,' 1878, p. 324) that the underground shoots of Triticum repens bend vertically up when the parts above ground are removed, and when the rhizomes are kept partly immersed in water. [page 190]
 
the primary radicle or of the leading shoot. The following considerations give us, as we believe, the clue. Firstly, any cause which disturbs the constitution* is apt to induce reversion; such as the crossing of two distinct races, or a change of conditions, as when domestic animals become feral. But the case which most concerns us, is the frequent appearance of peloric flowers on the summit of a stem, or in the centre of the inflorescence,—parts which, it is believed, receive the most sap; for when an irregular flower becomes perfectly regular or peloric, this may be attributed, at least partly, to reversion to a primitive143 and normal type. Even the position of a seed at the end of the capsule sometimes gives to the seedling developed from it a tendency to revert144. Secondly, reversions often occur by means of buds, independently of reproduction by seed; so that a bud may revert to the character of a former state many bud-generations ago. In the case of animals, reversions may occur in the individual with advancing age. Thirdly and lastly, radicles when they first protrude from the seed are always geotropic, and plumules or shoots almost always apogeotropic. If then any cause, such as an increased flow of sap or the presence of mycelium, disturbs the constitution of a lateral shoot or of a secondary radicle, it is apt to revert to its primordial145 state; and it becomes either apogeotropic or geotropic, as the case may be, and consequently grows either vertically upwards or downwards. It is indeed pos-
 
* The facts on which the following conclusions are founded are given in 'The Variation of Animals and Plants under Domestication,' 2nd edit. 1875. On the causes leading to reversion see chap. xii. vol. ii. and p. 59, chap. xiv. On peloric flowers, chap. xiii. p. 32; and see p. 337 on their position on the plant. With respect to seeds, p. 340. On reversion by means of buds, p. 438, chap. xi. vol. i. [page 191]
 
sible, or even probable, that this tendency to reversion may have been increased, as it is manifestly of service to the plant.
 
A SUMMARY OF CHAPTER.
 
A part or organ may be called sensitive, when its irritation excites movement in an adjoining part. Now it has been shown in this chapter, that the tip of the radicle of the bean is in this sense sensitive to the contact of any small object attached to one side by shellac or gum-water; also to a slight touch with dry caustic, and to a thin slice cut off one side. The radicles of the pea were tried with attached objects and caustic, both of which acted. With Phaseolus multiflorus the tip was hardly sensitive to small squares of attached card, but was sensitive to caustic and to slicing. The radicles of Tropaeolum were highly sensitive to contact; and so, as far as we could judge, were those of Gossypium herbaceum, and they were certainly sensitive to caustic. The tips of the radicles of Cucurbita ovifera were likewise highly sensitive to caustic, though only moderately so to contact. Raphanus sativus offered a somewhat doubtful case. With Aesculus the tips were quite indifferent to bodies attached to them, though sensitive to caustic. Those of Quercus robur and Zea mays were highly sensitive to contact, as were the radicles of the latter to caustic. In several of these cases the difference in sensitiveness of the tip to contact and to caustic was, as we believe, merely apparent; for with Gossypium, Raphanus, and Cucurbita, the tip was so fine and flexible that it was very difficult to attach any object to one of its sides. With the radicles of Aesculus, the tips were not at all sensitive to small bodies attached to them; but it does not follow from this [page 192] fact that they would not have been sensitive to somewhat greater continued pressure, if this could have been applied.
 
The peculiar form of sensitiveness which we are here considering, is confined to the tip of the radicle for a length of from 1 mm. to 1.5 mm. When this part is irritated by contact with any object, by caustic, or by a thin slice being cut off, the upper adjoining part of the radicle, for a length of from 6 or 7 to even 12 mm., is excited to bend away from the side which has been irritated. Some influence must therefore be transmitted from the tip along the radicle for this length. The curvature thus caused is generally symmetrical. The part which bends most apparently coincides with that of the most rapid growth. The tip and the basal part grow very slowly and they bend very little.
 
Considering the widely separated position in the vegetable series of the several above-named genera, we may conclude that the tips of the radicles of all, or almost all, plants are similarly sensitive, and transmit an influence causing the upper part to bend. With respect to the tips of the secondary radicles, those of Vicia faba, Pisum sativum, and Zea mays were alone observed, and they were found similarly sensitive.
 
In order that these movements should be properly displayed, it appears necessary that the radicles should grow at their normal rate. If subjected to a high temperature and made to grow rapidly, the tips seem either to lose their sensitiveness, or the upper part to lose the power of bending. So it appears to be if they grow very slowly from not being vigorous, or from being kept at too low a temperature; also when they are forced to germinate in the middle of the winter. [page 193]
 
The curvature of the radicle sometimes occurs within from 6 to 8 hours after the tip has been irritated, and almost always within 24 h., excepting in the case of the massive radicles of Aesculus. The curvature often amounts to a rectangle,—that is, the terminal part bends upwards until the tip, which is but little curved, projects almost horizontally. Occasionally the tip, from the continued irritation of the attached object, continues to bend up until it forms a hook with the point directed towards the zenith, or a loop, or even a spire. After a time the radicle apparently becomes accustomed to the irritation, as occurs in the case of tendrils, for it again grows downwards, although the bit of card or other object may remain attached to the tip. It is evident that a small object attached to the free point of a vertically suspended radicle can offer no mechanical resistance to its growth as a whole, for the object is carried downwards as the radicle elongates146, or upwards as the radicle curves upwards. Nor can the growth of the tip itself be mechanically checked by an object attached to it by gum-water, which remains all the time perfectly soft. The weight of the object, though quite insignificant147, is opposed to the upward curvature. We may therefore conclude that it is the irritation due to contact which excites the movement. The contact, however, must be prolonged, for the tips of 15 radicles were rubbed for a short time, and this did not cause them to bend. Here then we have a case of specialised sensibility, like that of the glands of Drosera; for these are exquisitely148 sensitive to the slightest pressure if prolonged, but not to two or three rough touches.
 
When the tip of a radicle is lightly touched on one side with dry nitrate of silver, the injury caused is [page 194] very slight, and the adjoining upper part bends away from the cauterised point, with more certainty in most cases than from an object attached on one side. Here it obviously is not the mere touch, but the effect produced by the caustic, which induces the tip to transmit some influence to the adjoining part, causing it to bend away. If one side of the tip is badly injured or killed by the caustic, it ceases to grow, whilst the opposite side continues growing; and the result is that the tip itself bends towards the injured side and often becomes completely hooked; and it is remarkable that in this case the adjoining upper part does not bend. The stimulus is too powerful or the shock too great for the proper influence to be transmitted from the tip. We have strictly149 analogous cases with Drosera, Dionaea and Pinguicula, with which plants a too powerful stimulus does not excite the tentacles to become incurved, or the lobes to close, or the margin150 to be folded inwards.
 
With respect to the degree of sensitiveness of the apex to contact under favourable conditions, we have seen that with Vicia faba a little square of writing-paper affixed with shellac sufficed to cause movement; as did on one occasion a square of merely damped goldbeaters' skin, but it acted very slowly. Short bits of moderately thick bristle (of which measurements have been given) affixed with gum-water acted in only three out of eleven trials, and beads of dried shellac under 1/200th of a grain in weight acted only twice in nine cases; so that here we have nearly reached the minimum of necessary irritation. The apex, therefore, is much less sensitive to pressure than the glands of Drosera, for these are affected by far thinner objects than bits of bristle, and by a very much less weight than 1/200th of a grain. [page 195] But the most interesting evidence of the delicate sensitiveness of the tip of the radicle, was afforded by its power of discriminating between equal-sized squares of card-like and very thin paper, when these were attached on opposite sides, as was observed with the radicles of the bean and oak.
 
When radicles of the bean are extended horizontally with squares of card attached to the lower sides of their tips, the irritation thus caused was always conquered by geotropism, which then acts under the most favourable conditions at right angles to the radicle. But when objects were attached to the radicles of any of the above-named genera, suspended vertically, the irritation conquered geotropism, which latter power at first acted obliquely on the radicle; so that the immediate27 irritation from the attached object, aided by its after-effects, prevailed and caused the radicle to bend upwards, until sometimes the point was directed to the zenith. We must, however, assume that the after-effects of the irritation of the tip by an attached object come into play, only after movement has been excited. The tips of the radicles of the pea seem to be more sensitive to contact than those of the bean, for when they were extended horizontally with squares of card adhering to their lower sides, a most curious struggle occasionally arose, sometimes one and sometimes the other force prevailing151, but ultimately geotropism was always victorious; nevertheless, in two instances the terminal part became so much curved upwards that loops were subsequently formed. With the pea, therefore, the irritation from an attached object, and from geotropism when acting at right angles to the radicle, are nearly balanced forces. Closely similar results were observed with the horizontally extended radicles of Cucurbita ovifera, [page 196] when their tips were slightly cauterised on the lower side.
 
Finally, the several co-ordinated movements by which radicles are enabled
to perform their proper functions are admirably perfect. In whatever
direction the primary radicle first protrudes from the seed, geotropism
guides it perpendicularly downwards; and the capacity to be acted on by the
attraction of gravity resides in the tip. But Sachs has proved* that the
secondary radicles, or those emitted by the primary one, are acted on by
geotropism in such a manner that they tend to bend only obliquely
downwards. If they had been acted on like the primary radicle, all the
radicles would have penetrated152 the ground in a close bundle. We have seen
that if the end of the primary radicle is cut off or injured, the adjoining
secondary radicles become geotropic and grow vertically downwards. This
power must often be of great service to the plant, when the primary radicle
has been destroyed by the larvae153 of insects, burrowing154 animals, or any
other accident. The tertiary radicles, or those emitted by the secondary
ones, are not influenced, at least in the case of the bean, by geotropism;
so they grow out freely in all directions. From this manner of growth of
the various kinds of radicles, they are distributed, together with their
absorbent hairs, throughout the surrounding soil, as Sachs has remarked, in
the most advantageous156 manner; for the whole soil is thus closely searched.
 
 Geotropism, as was shown in the last chapter, excites the primary radicle
to bend downwards with very little force, quite insufficient157 to penetrate136
the ground. Such penetration158 is effected by the pointed
* 'Arbeiten Bot. Institut, Würzburg,' Heft iv. 1874, pp. 605-631. [page 197]
 
apex (protected by the root-cap) being pressed down by the longitudinal expansion or growth of the terminal rigid portion, aided by its transverse expansion, both of which forces act powerfully. It is, however, indispensable that the seeds should be at first held down in some manner. When they lie on the bare surface they are held down by the attachment of the root-hairs to any adjoining objects; and this apparently is effected by the conversion159 of their outer surfaces into a cement. But many seeds get covered up by various accidents, or they fall into crevices160 or holes. With some seeds their own weight suffices. The circumnutating movement of the terminal growing part both of the primary and secondary radicles is so feeble that it can aid them very little in penetrating the ground, excepting when the superficial layer is very soft and damp. But it must aid them materially when they happen to break obliquely into cracks, or into burrows161 made by earth-worms or larvae. This movement, moreover, combined with the sensitiveness of the tip to contact, can hardly fail to be of the highest importance; for as the tip is always endeavouring to bend to all sides it will press on all sides, and will thus be able to discriminate162 between the harder and softer adjoining surfaces, in the same manner as it discriminated163 between the attached squares of card-like and thin paper. Consequently it will tend to bend from the harder soil, and will thus follow the lines of least resistance. So it will be if it meets with a stone or the root of another plant in the soil, as must incessantly occur. If the tip were not sensitive, and if it did not excite the upper part of the root to bend away, whenever it encountered at right angles some obstacle in the ground, it would be liable [page 198] to be doubled up into a contorted mass. But we have seen with radicles growing down inclined plates of glass, that as soon as the tip merely touched a slip of wood cemented across the plate, the whole terminal growing part curved away, so that the tip soon stood at right angles to its former direction; and thus it would be with an obstacle encountered in the ground, as far as the pressure of the surrounding soil would permit. We can also understand why thick and strong radicles, like those of Aesculus, should be endowed with less sensitiveness than more delicate ones; for the former would be able by the force of their growth to overcome any slight obstacle.
 
After a radicle, which has been deflected by some stone or root from its natural downward course, reaches the edge of the obstacle, geotropism will direct it to grow again straight downward; but we know that geotropism acts with very little force, and here another excellent adaptation, as Sachs has remarked,* comes into play. For the upper part of the radicle, a little above the apex, is, as we have seen, likewise sensitive; and this sensitiveness causes the radicle to bend like a tendril towards the touching object, so that as it rubs over the edge of an obstacle, it will bend downwards; and the curvature thus induced is abrupt, in which respect it differs from that caused by the irritation of one side of the tip. This downward bending coincides with that due to geotropism, and both will cause the root to resume its original course.
 
As radicles perceive an excess of moisture in the air on one side and bend towards this side, we may infer that they will act in the same manner with respect to moisture in the earth. The sensitiveness to moisture
 
* 'Arbeiten Bot. Inst., Würzburg,' Heft iii. p. 456. [page 199]
 
resides in the tip, which determines the bending of the upper part. This capacity perhaps partly accounts for the extent to which drain-pipes often become choked with roots.
 
Considering the several facts given in this chapter, we see that the course followed by a root through the soil is governed by extraordinarily164 complex and diversified165 agencies,—by geotropism acting in a different manner on the primary, secondary, and tertiary radicles,—by sensitiveness to contact, different in kind in the apex and in the part immediately above the apex, and apparently by sensitiveness to the varying dampness of different parts of the soil. These several stimuli166 to movement are all more powerful than geotropism, when this acts obliquely on a radicle, which has been deflected from its perpendicular downward course. The roots, moreover, of most plants are excited by light to bend either to or from it; but as roots are not naturally exposed to the light it is doubtful whether this sensitiveness, which is perhaps only the indirect result of the radicles being highly sensitive to other stimuli, is of any service to the plant. The direction which the apex takes at each successive period of the growth of a root, ultimately determines its whole course; it is therefore highly important that the apex should pursue from the first the most advantageous direction; and we can thus understand why sensitiveness to geotropism, to contact and to moisture, all reside in the tip, and why the tip determines the upper growing part to bend either from or to the exciting cause. A radicle may be compared with a burrowing animal such as a mole167, which wishes to penetrate perpendicularly down into the ground. By continually moving his head from side to side, or circumnutating, he will feel any stone [page 200] or other obstacle, as well as any difference in the hardness of the soil, and he will turn from that side; if the earth is damper on one than on the other side he will turn thitherward as a better hunting-ground. Nevertheless, after each interruption, guided by the sense of gravity, he will be able to recover his downward course and to burrow155 to a greater depth. [page 201]

点击收听单词发音收听单词发音  

1 discriminating 4umz8W     
a.有辨别能力的
参考例句:
  • Due caution should be exercised in discriminating between the two. 在区别这两者时应该相当谨慎。
  • Many businesses are accused of discriminating against women. 许多企业被控有歧视妇女的做法。
2 caustic 9rGzb     
adj.刻薄的,腐蚀性的
参考例句:
  • He opened his mouth to make a caustic retort.他张嘴开始进行刻薄的反击。
  • He enjoys making caustic remarks about other people.他喜欢挖苦别人。
3 seedlings b277b580afbd0e829dcc6bdb776b4a06     
n.刚出芽的幼苗( seedling的名词复数 )
参考例句:
  • Ninety-five per cent of the new seedlings have survived. 新栽的树苗95%都已成活。 来自《现代汉英综合大词典》
  • In such wet weather we must prevent the seedlings from rotting. 这样的阴雨天要防止烂秧。 来自《现代汉英综合大词典》
4 seedling GZYxQ     
n.秧苗,树苗
参考例句:
  • She cut down the seedling with one chop.她一刀就把小苗砍倒了。
  • The seedling are coming up full and green.苗长得茁壮碧绿。
5 incessantly AqLzav     
ad.不停地
参考例句:
  • The machines roar incessantly during the hours of daylight. 机器在白天隆隆地响个不停。
  • It rained incessantly for the whole two weeks. 雨不间断地下了整整两个星期。
6 germinating bfd6e4046522bd5ac73393f378e9c3e0     
n.& adj.发芽(的)v.(使)发芽( germinate的现在分词 )
参考例句:
  • Glyoxysomes are particularly well known in germinating fatly seeds. 人们已经知道,萌发的含油种子中有乙醛酸循环体。 来自辞典例句
  • Modern, industrial society, slowly germinating in the shadow of medievalism, burst the bonds of feudalism. 现代工业社会缓慢地在中世纪精神的阴影下孕育成长着,终于挣脱了封建制度的枷锁。 来自辞典例句
7 underlying 5fyz8c     
adj.在下面的,含蓄的,潜在的
参考例句:
  • The underlying theme of the novel is very serious.小说隐含的主题是十分严肃的。
  • This word has its underlying meaning.这个单词有它潜在的含义。
8 descended guQzoy     
a.为...后裔的,出身于...的
参考例句:
  • A mood of melancholy descended on us. 一种悲伤的情绪袭上我们的心头。
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
9 vertically SfmzYG     
adv.垂直地
参考例句:
  • Line the pages for the graph both horizontally and vertically.在这几页上同时画上横线和竖线,以便制作图表。
  • The human brain is divided vertically down the middle into two hemispheres.人脑从中央垂直地分为两半球。
10 vertical ZiywU     
adj.垂直的,顶点的,纵向的;n.垂直物,垂直的位置
参考例句:
  • The northern side of the mountain is almost vertical.这座山的北坡几乎是垂直的。
  • Vertical air motions are not measured by this system.垂直气流的运动不用这种系统来测量。
11 flattened 1d5d9fedd9ab44a19d9f30a0b81f79a8     
[医](水)平扁的,弄平的
参考例句:
  • She flattened her nose and lips against the window. 她把鼻子和嘴唇紧贴着窗户。
  • I flattened myself against the wall to let them pass. 我身体紧靠着墙让他们通过。
12 flattening flattening     
n. 修平 动词flatten的现在分词
参考例句:
  • Flattening of the right atrial border is also seen in constrictive pericarditis. 右心房缘变平亦见于缩窄性心包炎。
  • He busied his fingers with flattening the leaves of the book. 他手指忙着抚平书页。
13 oblique x5czF     
adj.斜的,倾斜的,无诚意的,不坦率的
参考例句:
  • He made oblique references to her lack of experience.他拐弯抹角地说她缺乏经验。
  • She gave an oblique look to one side.她向旁边斜看了一眼。
14 apex mwrzX     
n.顶点,最高点
参考例句:
  • He reached the apex of power in the early 1930s.他在三十年代初达到了权力的顶峰。
  • His election to the presidency was the apex of his career.当选总统是他一生事业的顶峰。
15 glide 2gExT     
n./v.溜,滑行;(时间)消逝
参考例句:
  • We stood in silence watching the snake glide effortlessly.我们噤若寒蝉地站着,眼看那条蛇逍遥自在地游来游去。
  • So graceful was the ballerina that she just seemed to glide.那芭蕾舞女演员翩跹起舞,宛如滑翔。
16 abrupt 2fdyh     
adj.突然的,意外的;唐突的,鲁莽的
参考例句:
  • The river takes an abrupt bend to the west.这河突然向西转弯。
  • His abrupt reply hurt our feelings.他粗鲁的回答伤了我们的感情。
17 gliding gliding     
v. 滑翔 adj. 滑动的
参考例句:
  • Swans went gliding past. 天鹅滑行而过。
  • The weather forecast has put a question mark against the chance of doing any gliding tomorrow. 天气预报对明天是否能举行滑翔表示怀疑。
18 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
19 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
20 bent QQ8yD     
n.爱好,癖好;adj.弯的;决心的,一心的
参考例句:
  • He was fully bent upon the project.他一心扑在这项计划上。
  • We bent over backward to help them.我们尽了最大努力帮助他们。
21 wards 90fafe3a7d04ee1c17239fa2d768f8fc     
区( ward的名词复数 ); 病房; 受监护的未成年者; 被人照顾或控制的状态
参考例句:
  • This hospital has 20 medical [surgical] wards. 这所医院有 20 个内科[外科]病房。
  • It was a big constituency divided into three wards. 这是一个大选区,下设三个分区。
22 perpendicular GApy0     
adj.垂直的,直立的;n.垂直线,垂直的位置
参考例句:
  • The two lines of bones are set perpendicular to one another.这两排骨头相互垂直。
  • The wall is out of the perpendicular.这墙有些倾斜。
23 perpendicularly 914de916890a9aa3714fa26fe542c2df     
adv. 垂直地, 笔直地, 纵向地
参考例句:
  • Fray's forehead was wrinkled both perpendicularly and crosswise. 弗雷的前额上纹路纵横。
  • Automatic resquaring feature insures nozzle is perpendicularly to the part being cut. 自动垂直功能,可以确保刀头回到与工件完全垂直的位置去切割。
24 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
25 mere rC1xE     
adj.纯粹的;仅仅,只不过
参考例句:
  • That is a mere repetition of what you said before.那不过是重复了你以前讲的话。
  • It's a mere waste of time waiting any longer.再等下去纯粹是浪费时间。
26 rigid jDPyf     
adj.严格的,死板的;刚硬的,僵硬的
参考例句:
  • She became as rigid as adamant.她变得如顽石般的固执。
  • The examination was so rigid that nearly all aspirants were ruled out.考试很严,几乎所有的考生都被淘汰了。
27 immediate aapxh     
adj.立即的;直接的,最接近的;紧靠的
参考例句:
  • His immediate neighbours felt it their duty to call.他的近邻认为他们有责任去拜访。
  • We declared ourselves for the immediate convocation of the meeting.我们主张立即召开这个会议。
28 deflect RxvxG     
v.(使)偏斜,(使)偏离,(使)转向
参考例句:
  • Never let a little problem deflect you.决不要因一点小问题就半途而废。
  • They decided to deflect from the original plan.他们决定改变原计划。
29 deflected 3ff217d1b7afea5ab74330437461da11     
偏离的
参考例句:
  • The ball deflected off Reid's body into the goal. 球打在里德身上反弹进球门。
  • Most of its particles are deflected. 此物质的料子大多是偏斜的。
30 touching sg6zQ9     
adj.动人的,使人感伤的
参考例句:
  • It was a touching sight.这是一幅动人的景象。
  • His letter was touching.他的信很感人。
31 affix gK0y7     
n.附件,附录 vt.附贴,盖(章),签署
参考例句:
  • Please affix your signature to the document. 请你在这个文件上签字。
  • Complete the form and affix four tokens to its back. 填完该表,在背面贴上4张凭券。
32 affixed 0732dcfdc852b2620b9edaa452082857     
adj.[医]附着的,附着的v.附加( affix的过去式和过去分词 );粘贴;加以;盖(印章)
参考例句:
  • The label should be firmly affixed to the package. 这张标签应该牢牢地贴在包裹上。
  • He affixed the sign to the wall. 他将标记贴到墙上。 来自《简明英汉词典》
33 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
34 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
35 lobes fe8c3178c8180f03dd0fc8ae16f13e3c     
n.耳垂( lobe的名词复数 );(器官的)叶;肺叶;脑叶
参考例句:
  • The rotor has recesses in its three faces between the lobes. 转子在其凸角之间的三个面上有凹槽。 来自辞典例句
  • The chalazal parts of the endosperm containing free nuclei forms several lobes. 包含游离核的合点端胚乳部分形成几个裂片。 来自辞典例句
36 downwards MsDxU     
adj./adv.向下的(地),下行的(地)
参考例句:
  • He lay face downwards on his bed.他脸向下伏在床上。
  • As the river flows downwards,it widens.这条河愈到下游愈宽。
37 cork VoPzp     
n.软木,软木塞
参考例句:
  • We heard the pop of a cork.我们听见瓶塞砰的一声打开。
  • Cork is a very buoyant material.软木是极易浮起的材料。
38 vessels fc9307c2593b522954eadb3ee6c57480     
n.血管( vessel的名词复数 );船;容器;(具有特殊品质或接受特殊品质的)人
参考例句:
  • The river is navigable by vessels of up to 90 tons. 90 吨以下的船只可以从这条河通过。 来自《简明英汉词典》
  • All modern vessels of any size are fitted with radar installations. 所有现代化船只都有雷达装置。 来自《现代汉英综合大词典》
39 protrude V0mzm     
v.使突出,伸出,突出
参考例句:
  • The tip of her tongue was protruding slightly.她的舌尖微微伸出。
  • A huge round mass of smooth rock protruding from the water.一块光滑的巨型圆石露出水面。
40 protruded ebe69790c4eedce2f4fb12105fc9e9ac     
v.(使某物)伸出,(使某物)突出( protrude的过去式和过去分词 )
参考例句:
  • The child protruded his tongue. 那小孩伸出舌头。 来自《简明英汉词典》
  • The creature's face seemed to be protruded, because of its bent carriage. 那人的脑袋似乎向前突出,那是因为身子佝偻的缘故。 来自英汉文学
41 obliquely ad073d5d92dfca025ebd4a198e291bdc     
adv.斜; 倾斜; 间接; 不光明正大
参考例句:
  • From the gateway two paths led obliquely across the court. 从门口那儿,有两条小路斜越过院子。 来自辞典例句
  • He was receding obliquely with a curious hurrying gait. 他歪着身子,古怪而急促地迈着步子,往后退去。 来自辞典例句
42 axis sdXyz     
n.轴,轴线,中心线;坐标轴,基准线
参考例句:
  • The earth's axis is the line between the North and South Poles.地轴是南北极之间的线。
  • The axis of a circle is its diameter.圆的轴线是其直径。
43 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
44 peculiar cinyo     
adj.古怪的,异常的;特殊的,特有的
参考例句:
  • He walks in a peculiar fashion.他走路的样子很奇特。
  • He looked at me with a very peculiar expression.他用一种很奇怪的表情看着我。
45 beads 894701f6859a9d5c3c045fd6f355dbf5     
n.(空心)小珠子( bead的名词复数 );水珠;珠子项链
参考例句:
  • a necklace of wooden beads 一条木珠项链
  • Beads of perspiration stood out on his forehead. 他的前额上挂着汗珠。
46 bead hdbyl     
n.念珠;(pl.)珠子项链;水珠
参考例句:
  • She accidentally swallowed a glass bead.她不小心吞下了一颗玻璃珠。
  • She has a beautiful glass bead and a bracelet in the box.盒子里有一颗美丽的玻璃珠和手镯。
47 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
48 protrudes b9a9892d86d36fcc2b6624b1867a9d3e     
v.(使某物)伸出,(使某物)突出( protrude的第三人称单数 )
参考例句:
  • My part that protrudes from the gum has a'skin" of enamel. 在我突出于齿龈的部分有一层珐琅“皮”。 来自辞典例句
  • Hyperplasia median lobe of the prostate produces a polypoid mass that protrudes in the bladder lumen. 前列腺中叶异常增生,表现为息肉样肿物,突入膀胱腔内。 来自互联网
49 outwards NJuxN     
adj.外面的,公开的,向外的;adv.向外;n.外形
参考例句:
  • Does this door open inwards or outwards?这门朝里开还是朝外开?
  • In lapping up a fur,they always put the inner side outwards.卷毛皮时,他们总是让内层朝外。
50 fig L74yI     
n.无花果(树)
参考例句:
  • The doctor finished the fig he had been eating and selected another.这位医生吃完了嘴里的无花果,又挑了一个。
  • You can't find a person who doesn't know fig in the United States.你找不到任何一个在美国的人不知道无花果的。
51 distinguished wu9z3v     
adj.卓越的,杰出的,著名的
参考例句:
  • Elephants are distinguished from other animals by their long noses.大象以其长长的鼻子显示出与其他动物的不同。
  • A banquet was given in honor of the distinguished guests.宴会是为了向贵宾们致敬而举行的。
52 opposition eIUxU     
n.反对,敌对
参考例句:
  • The party leader is facing opposition in his own backyard.该党领袖在自己的党內遇到了反对。
  • The police tried to break down the prisoner's opposition.警察设法制住了那个囚犯的反抗。
53 lateral 83ey7     
adj.侧面的,旁边的
参考例句:
  • An airfoil that controls lateral motion.能够控制横向飞行的机翼。
  • Mr.Dawson walked into the court from a lateral door.道森先生从一个侧面的门走进法庭。
54 laterally opIzAf     
ad.横向地;侧面地;旁边地
参考例句:
  • Shafts were sunk, with tunnels dug laterally. 竖井已经打下,并且挖有横向矿道。
  • When the plate becomes unstable, it buckles laterally. 当板失去稳定时,就发生横向屈曲。
55 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
56 sketches 8d492ee1b1a5d72e6468fd0914f4a701     
n.草图( sketch的名词复数 );素描;速写;梗概
参考例句:
  • The artist is making sketches for his next painting. 画家正为他的下一幅作品画素描。
  • You have to admit that these sketches are true to life. 你得承认这些素描很逼真。 来自《简明英汉词典》
57 specimens 91fc365099a256001af897127174fcce     
n.样品( specimen的名词复数 );范例;(化验的)抽样;某种类型的人
参考例句:
  • Astronauts have brought back specimens of rock from the moon. 宇航员从月球带回了岩石标本。
  • The traveler brought back some specimens of the rocks from the mountains. 那位旅行者从山上带回了一些岩石标本。 来自《简明英汉词典》
58 attachment POpy1     
n.附属物,附件;依恋;依附
参考例句:
  • She has a great attachment to her sister.她十分依恋她的姐姐。
  • She's on attachment to the Ministry of Defense.她现在隶属于国防部。
59 partially yL7xm     
adv.部分地,从某些方面讲
参考例句:
  • The door was partially concealed by the drapes.门有一部分被门帘遮住了。
  • The police managed to restore calm and the curfew was partially lifted.警方设法恢复了平静,宵禁部分解除。
60 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
61 crooked xvazAv     
adj.弯曲的;不诚实的,狡猾的,不正当的
参考例句:
  • He crooked a finger to tell us to go over to him.他弯了弯手指,示意我们到他那儿去。
  • You have to drive slowly on these crooked country roads.在这些弯弯曲曲的乡间小路上你得慢慢开车。
62 affixing 5744b3b3c6bf9b7d389323054e11854d     
v.附加( affix的现在分词 );粘贴;加以;盖(印章)
参考例句:
  • Formally approves a document by affixing a signature. 以签名的形式正式批准文件。 来自互联网
  • Forfixing, insulating, shock affixing parts or screws of many items such as appliances, stereos, and eyeglasses. 电器、音响响、光学学、电脑等的零件、螺丝固定绝缘、防震与接著。 来自互联网
63 quill 7SGxQ     
n.羽毛管;v.给(织物或衣服)作皱褶
参考例句:
  • He wrote with a quill.他用羽毛笔写字。
  • She dipped a quill in ink,and then began to write.她将羽毛笔在墨水里蘸了一下,随后开始书写。
64 briefly 9Styo     
adv.简单地,简短地
参考例句:
  • I want to touch briefly on another aspect of the problem.我想简单地谈一下这个问题的另一方面。
  • He was kidnapped and briefly detained by a terrorist group.他被一个恐怖组织绑架并短暂拘禁。
65 affected TzUzg0     
adj.不自然的,假装的
参考例句:
  • She showed an affected interest in our subject.她假装对我们的课题感到兴趣。
  • His manners are affected.他的态度不自然。
66 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
67 sitting-room sitting-room     
n.(BrE)客厅,起居室
参考例句:
  • The sitting-room is clean.起居室很清洁。
  • Each villa has a separate sitting-room.每栋别墅都有一间独立的起居室。
68 inexplicable tbCzf     
adj.无法解释的,难理解的
参考例句:
  • It is now inexplicable how that development was misinterpreted.当时对这一事态发展的错误理解究竟是怎么产生的,现在已经无法说清楚了。
  • There are many things which are inexplicable by science.有很多事科学还无法解释。
69 relinquishing d60b179a088fd85348d2260d052c492a     
交出,让给( relinquish的现在分词 ); 放弃
参考例句:
  • The international relinquishing of sovereignty would have to spring from the people. 在国际间放弃主权一举要由人民提出要求。
  • We know that no one ever seizes power with the intention of relinquishing it. 我们很明白,没有人会为了废除权力而夺取权力。 来自英汉文学
70 specified ZhezwZ     
adj.特定的
参考例句:
  • The architect specified oak for the wood trim. 那位建筑师指定用橡木做木饰条。
  • It is generated by some specified means. 这是由某些未加说明的方法产生的。
71 indirectly a8UxR     
adv.间接地,不直接了当地
参考例句:
  • I heard the news indirectly.这消息我是间接听来的。
  • They were approached indirectly through an intermediary.通过一位中间人,他们进行了间接接触。
72 interfere b5lx0     
v.(in)干涉,干预;(with)妨碍,打扰
参考例句:
  • If we interfere, it may do more harm than good.如果我们干预的话,可能弊多利少。
  • When others interfere in the affair,it always makes troubles. 别人一卷入这一事件,棘手的事情就来了。
73 varied giIw9     
adj.多样的,多变化的
参考例句:
  • The forms of art are many and varied.艺术的形式是多种多样的。
  • The hotel has a varied programme of nightly entertainment.宾馆有各种晚间娱乐活动。
74 germinate hgSx1     
v.发芽;发生;发展
参考例句:
  • Seeds will not germinate without water.没有水,种子是不会发芽的。
  • Can thin and hollow seeds germinate?瘦瘪的种子能够发芽吗?
75 germination e3b6166de2e0bafce0467a9f740b91e3     
n.萌芽,发生;萌发;生芽;催芽
参考例句:
  • At the onset of germination, the hypocotyl elongates rapidly by cell enlargement. 萌发开始时,下胚轴依靠细胞增大而迅速伸长。 来自辞典例句
  • Excessive moisture is unfavourable for soybean germination. 水分过多对于大豆萌发是不利的。 来自辞典例句
76 innate xbxzC     
adj.天生的,固有的,天赋的
参考例句:
  • You obviously have an innate talent for music.你显然有天生的音乐才能。
  • Correct ideas are not innate in the mind.人的正确思想不是自己头脑中固有的。
77 germinated 34800fedce882b7815e35b85cf63273d     
v.(使)发芽( germinate的过去式和过去分词 )
参考例句:
  • First, the researchers germinated the seeds. 研究人员首先让种子发芽。 来自辞典例句
  • In spring they are germinated and grown for a year in beds. 春季里,他们在苗床发芽并生长一年。 来自辞典例句
78 lessens 77e6709415979411b220a451af0eb9d3     
变少( lessen的第三人称单数 ); 减少(某事物)
参考例句:
  • Eating a good diet significantly lessens the risk of heart disease. 良好的饮食习惯能大大减少患心脏病的机率。
  • Alcohol lessens resistance to diseases. 含有酒精的饮料会减弱对疾病的抵抗力。
79 annuls e226ff6d52a64c0d3034962428db5d28     
v.宣告无效( annul的第三人称单数 );取消;使消失;抹去
参考例句:
80 abruptly iINyJ     
adv.突然地,出其不意地
参考例句:
  • He gestured abruptly for Virginia to get in the car.他粗鲁地示意弗吉尼亚上车。
  • I was abruptly notified that a half-hour speech was expected of me.我突然被通知要讲半个小时的话。
81 spire SF3yo     
n.(教堂)尖顶,尖塔,高点
参考例句:
  • The church spire was struck by lightning.教堂的尖顶遭到了雷击。
  • They could just make out the spire of the church in the distance.他们只能辨认出远处教堂的尖塔。
82 stimulus 3huyO     
n.刺激,刺激物,促进因素,引起兴奋的事物
参考例句:
  • Regard each failure as a stimulus to further efforts.把每次失利看成对进一步努力的激励。
  • Light is a stimulus to growth in plants.光是促进植物生长的一个因素。
83 remains 1kMzTy     
n.剩余物,残留物;遗体,遗迹
参考例句:
  • He ate the remains of food hungrily.他狼吞虎咽地吃剩余的食物。
  • The remains of the meal were fed to the dog.残羹剩饭喂狗了。
84 ascertaining e416513cdf74aa5e4277c1fc28aab393     
v.弄清,确定,查明( ascertain的现在分词 )
参考例句:
  • I was ascertaining whether the cellar stretched out in front or behind. 我当时是要弄清楚地下室是朝前还是朝后延伸的。 来自辞典例句
  • The design and ascertaining of permanent-magnet-biased magnetic bearing parameter are detailed introduced. 并对永磁偏置磁悬浮轴承参数的设计和确定进行了详细介绍。 来自互联网
85 irritation la9zf     
n.激怒,恼怒,生气
参考例句:
  • He could not hide his irritation that he had not been invited.他无法掩饰因未被邀请而生的气恼。
  • Barbicane said nothing,but his silence covered serious irritation.巴比康什么也不说,但是他的沉默里潜伏着阴郁的怒火。
86 applied Tz2zXA     
adj.应用的;v.应用,适用
参考例句:
  • She plans to take a course in applied linguistics.她打算学习应用语言学课程。
  • This cream is best applied to the face at night.这种乳霜最好晚上擦脸用。
87 speck sFqzM     
n.微粒,小污点,小斑点
参考例句:
  • I have not a speck of interest in it.我对它没有任何兴趣。
  • The sky is clear and bright without a speck of cloud.天空晴朗,一星星云彩也没有。
88 specks 6d64faf449275b5ce146fe2c78100fed     
n.眼镜;斑点,微粒,污点( speck的名词复数 )
参考例句:
  • Minutes later Brown spotted two specks in the ocean. 几分钟后布朗发现海洋中有两个小点。 来自英汉非文学 - 百科语料821
  • Do you ever seem to see specks in front of your eyes? 你眼睛前面曾似乎看见过小点吗? 来自辞典例句
89 bristle gs1zo     
v.(毛发)直立,气势汹汹,发怒;n.硬毛发
参考例句:
  • It has a short stumpy tail covered with bristles.它粗短的尾巴上鬃毛浓密。
  • He bristled with indignation at the suggestion that he was racist.有人暗示他是个种族主义者,他对此十分恼火。
90 efficiently ZuTzXQ     
adv.高效率地,有能力地
参考例句:
  • The worker oils the machine to operate it more efficiently.工人给机器上油以使机器运转更有效。
  • Local authorities have to learn to allocate resources efficiently.地方政府必须学会有效地分配资源。
91 penetrating ImTzZS     
adj.(声音)响亮的,尖锐的adj.(气味)刺激的adj.(思想)敏锐的,有洞察力的
参考例句:
  • He had an extraordinarily penetrating gaze. 他的目光有股异乎寻常的洞察力。
  • He examined the man with a penetrating gaze. 他以锐利的目光仔细观察了那个人。
92 favourable favourable     
adj.赞成的,称赞的,有利的,良好的,顺利的
参考例句:
  • The company will lend you money on very favourable terms.这家公司将以非常优惠的条件借钱给你。
  • We found that most people are favourable to the idea.我们发现大多数人同意这个意见。
93 perfectly 8Mzxb     
adv.完美地,无可非议地,彻底地
参考例句:
  • The witnesses were each perfectly certain of what they said.证人们个个对自己所说的话十分肯定。
  • Everything that we're doing is all perfectly above board.我们做的每件事情都是光明正大的。
94 twig VK1zg     
n.小树枝,嫩枝;v.理解
参考例句:
  • He heard the sharp crack of a twig.他听到树枝清脆的断裂声。
  • The sharp sound of a twig snapping scared the badger away.细枝突然折断的刺耳声把獾惊跑了。
95 secondly cjazXx     
adv.第二,其次
参考例句:
  • Secondly,use your own head and present your point of view.第二,动脑筋提出自己的见解。
  • Secondly it is necessary to define the applied load.其次,需要确定所作用的载荷。
96 ascertained e6de5c3a87917771a9555db9cf4de019     
v.弄清,确定,查明( ascertain的过去式和过去分词 )
参考例句:
  • The previously unidentified objects have now been definitely ascertained as being satellites. 原来所说的不明飞行物现在已证实是卫星。 来自《简明英汉词典》
  • I ascertained that she was dead. 我断定她已经死了。 来自《简明英汉词典》
97 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
98 platinum CuOyC     
n.白金
参考例句:
  • I'll give her a platinum ring.我打算送给她一枚白金戒指。
  • Platinum exceeds gold in value.白金的价值高于黄金。
99 simultaneously 4iBz1o     
adv.同时发生地,同时进行地
参考例句:
  • The radar beam can track a number of targets almost simultaneously.雷达波几乎可以同时追着多个目标。
  • The Windows allow a computer user to execute multiple programs simultaneously.Windows允许计算机用户同时运行多个程序。
100 acting czRzoc     
n.演戏,行为,假装;adj.代理的,临时的,演出用的
参考例句:
  • Ignore her,she's just acting.别理她,她只是假装的。
  • During the seventies,her acting career was in eclipse.在七十年代,她的表演生涯黯然失色。
101 ruptured 077b042156149d8d522b697413b3801c     
v.(使)破裂( rupture的过去式和过去分词 );(使体内组织等)断裂;使(友好关系)破裂;使绝交
参考例句:
  • They reported that the pipeline had ruptured. 他们报告说管道已经破裂了。 来自《简明英汉词典》
  • The wall through Berlin was finally ruptured, prefiguring the reunification of Germany. 柏林墙终于倒塌了,预示着德国的重新统一。 来自辞典例句
102 crumpled crumpled     
adj. 弯扭的, 变皱的 动词crumple的过去式和过去分词形式
参考例句:
  • She crumpled the letter up into a ball and threw it on the fire. 她把那封信揉成一团扔进了火里。
  • She flattened out the crumpled letter on the desk. 她在写字台上把皱巴巴的信展平。
103 backwards BP9ya     
adv.往回地,向原处,倒,相反,前后倒置地
参考例句:
  • He turned on the light and began to pace backwards and forwards.他打开电灯并开始走来走去。
  • All the girls fell over backwards to get the party ready.姑娘们迫不及待地为聚会做准备。
104 analogous aLdyQ     
adj.相似的;类似的
参考例句:
  • The two situations are roughly analogous.两种情況大致相似。
  • The company is in a position closely analogous to that of its main rival.该公司与主要竞争对手的处境极为相似。
105 behold jQKy9     
v.看,注视,看到
参考例句:
  • The industry of these little ants is wonderful to behold.这些小蚂蚁辛勤劳动的样子看上去真令人惊叹。
  • The sunrise at the seaside was quite a sight to behold.海滨日出真是个奇景。
106 conspicuous spszE     
adj.明眼的,惹人注目的;炫耀的,摆阔气的
参考例句:
  • It is conspicuous that smoking is harmful to health.很明显,抽烟对健康有害。
  • Its colouring makes it highly conspicuous.它的色彩使它非常惹人注目。
107 conspicuously 3vczqb     
ad.明显地,惹人注目地
参考例句:
  • France remained a conspicuously uneasy country. 法国依然是个明显不太平的国家。
  • She figured conspicuously in the public debate on the issue. 她在该问题的公开辩论中很引人注目。
108 decided lvqzZd     
adj.决定了的,坚决的;明显的,明确的
参考例句:
  • This gave them a decided advantage over their opponents.这使他们比对手具有明显的优势。
  • There is a decided difference between British and Chinese way of greeting.英国人和中国人打招呼的方式有很明显的区别。
109 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
110 victorious hhjwv     
adj.胜利的,得胜的
参考例句:
  • We are certain to be victorious.我们定会胜利。
  • The victorious army returned in triumph.获胜的部队凯旋而归。
111 friable EisxX     
adj.易碎的
参考例句:
  • The friable boxes arrived intact.这些易碎的箱子完整无损地运到了。
  • The friable china survived the bumpy journey safe and sound.那批易碎的瓷器经过颠簸的旅途仍完好无损。
112 steadily Qukw6     
adv.稳定地;不变地;持续地
参考例句:
  • The scope of man's use of natural resources will steadily grow.人类利用自然资源的广度将日益扩大。
  • Our educational reform was steadily led onto the correct path.我们的教学改革慢慢上轨道了。
113 lessened 6351a909991322c8a53dc9baa69dda6f     
减少的,减弱的
参考例句:
  • Listening to the speech through an interpreter lessened its impact somewhat. 演讲辞通过翻译的嘴说出来,多少削弱了演讲的力量。
  • The flight to suburbia lessened the number of middle-class families living within the city. 随着迁往郊外的风行,住在城内的中产家庭减少了。
114 cinders cinders     
n.煤渣( cinder的名词复数 );炭渣;煤渣路;煤渣跑道
参考例句:
  • This material is variously termed ash, clinker, cinders or slag. 这种材料有不同的名称,如灰、炉渣、煤渣或矿渣。 来自《简明英汉词典》
  • Rake out the cinders before you start a new fire. 在重新点火前先把煤渣耙出来。 来自《简明英汉词典》
115 glands 82573e247a54d4ca7619fbc1a5141d80     
n.腺( gland的名词复数 )
参考例句:
  • a snake's poison glands 蛇的毒腺
  • the sebaceous glands in the skin 皮脂腺
116 tentacles de6ad1cd521db1ee7397e4ed9f18a212     
n.触手( tentacle的名词复数 );触角;触须;触毛
参考例句:
  • Tentacles of fear closed around her body. 恐惧的阴影笼罩着她。
  • Many molluscs have tentacles. 很多软体动物有触角。 来自《简明英汉词典》
117 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
118 procured 493ee52a2e975a52c94933bb12ecc52b     
v.(努力)取得, (设法)获得( procure的过去式和过去分词 );拉皮条
参考例句:
  • These cars are to be procured through open tender. 这些汽车要用公开招标的办法购买。 来自《现代汉英综合大词典》
  • A friend procured a position in the bank for my big brother. 一位朋友为我哥哥谋得了一个银行的职位。 来自《用法词典》
119 conclusive TYjyw     
adj.最后的,结论的;确凿的,消除怀疑的
参考例句:
  • They produced some fairly conclusive evidence.他们提供了一些相当确凿的证据。
  • Franklin did not believe that the French tests were conclusive.富兰克林不相信这个法国人的实验是结论性的。
120 elongate wjZzd     
v.拉长,伸长,延长
参考例句:
  • We plan to elongate the cooperation with that company in Australia.我们打算延长与澳洲那家公司的合作关系。
  • Corn is treated when the stalk starts to elongate.在玉米秆开始拔节时,给玉米打药。
121 elongated 6a3aeff7c3bf903f4176b42850937718     
v.延长,加长( elongate的过去式和过去分词 )
参考例句:
  • Modigliani's women have strangely elongated faces. 莫迪里阿尼画中的妇女都长着奇长无比的脸。
  • A piece of rubber can be elongated by streching. 一块橡皮可以拉长。 来自《用法词典》
122 tortuous 7J2za     
adj.弯弯曲曲的,蜿蜒的
参考例句:
  • We have travelled a tortuous road.我们走过了曲折的道路。
  • They walked through the tortuous streets of the old city.他们步行穿过老城区中心弯弯曲曲的街道。
123 recording UktzJj     
n.录音,记录
参考例句:
  • How long will the recording of the song take?录下这首歌得花多少时间?
  • I want to play you a recording of the rehearsal.我想给你放一下彩排的录像。
124 anomalous MwbzI     
adj.反常的;不规则的
参考例句:
  • For years this anomalous behaviour has baffled scientists.几年来这种反常行为让科学家们很困惑。
  • The mechanism of this anomalous vascular response is unknown.此种不规则的血管反应的机制尚不清楚。
125 triangular 7m1wc     
adj.三角(形)的,三者间的
参考例句:
  • It's more or less triangular plot of land.这块地略成三角形。
  • One particular triangular relationship became the model of Simone's first novel.一段特殊的三角关系成了西蒙娜第一本小说的原型。
126 accurately oJHyf     
adv.准确地,精确地
参考例句:
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
127 spires 89c7a5b33df162052a427ff0c7ab3cc6     
n.(教堂的) 塔尖,尖顶( spire的名词复数 )
参考例句:
  • Her masts leveled with the spires of churches. 船的桅杆和教堂的塔尖一样高。 来自《简明英汉词典》
  • White church spires lift above green valleys. 教堂的白色尖顶耸立在绿色山谷中。 来自《简明英汉词典》
128 sieves 4aab5e1b89aa18bd1016d4c60e9cea9d     
筛,漏勺( sieve的名词复数 )
参考例句:
  • This thesis emphasized on the preparation of mesoporous molecular sieves MSU. 中孔分子筛MSU是当今认为在稳定性方面很有发展前途的一种催化新材料。
  • The mesoporous silica molecular sieves Zr-MCM-41 were synthesized in ethylenediamine. 以乙二胺为碱性介质合成了Zr-MCM-41介孔分子筛。
129 sieve wEDy4     
n.筛,滤器,漏勺
参考例句:
  • We often shake flour through a sieve.我们经常用筛子筛面粉。
  • Finally,it is like drawing water with a sieve.到头来,竹篮打水一场空。
130 solely FwGwe     
adv.仅仅,唯一地
参考例句:
  • Success should not be measured solely by educational achievement.成功与否不应只用学业成绩来衡量。
  • The town depends almost solely on the tourist trade.这座城市几乎完全靠旅游业维持。
131 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
132 inspection y6TxG     
n.检查,审查,检阅
参考例句:
  • On random inspection the meat was found to be bad.经抽查,发现肉变质了。
  • The soldiers lined up for their daily inspection by their officers.士兵们列队接受军官的日常检阅。
133 relatively bkqzS3     
adv.比较...地,相对地
参考例句:
  • The rabbit is a relatively recent introduction in Australia.兔子是相对较新引入澳大利亚的物种。
  • The operation was relatively painless.手术相对来说不痛。
134 severely SiCzmk     
adv.严格地;严厉地;非常恶劣地
参考例句:
  • He was severely criticized and removed from his post.他受到了严厉的批评并且被撤了职。
  • He is severely put down for his careless work.他因工作上的粗心大意而受到了严厉的批评。
135 fungus gzRyI     
n.真菌,真菌类植物
参考例句:
  • Mushrooms are a type of fungus.蘑菇是一种真菌。
  • This fungus can just be detected by the unaided eye.这种真菌只用肉眼就能检查出。
136 penetrate juSyv     
v.透(渗)入;刺入,刺穿;洞察,了解
参考例句:
  • Western ideas penetrate slowly through the East.西方观念逐渐传入东方。
  • The sunshine could not penetrate where the trees were thickest.阳光不能透入树木最浓密的地方。
137 penetrates 6e705c7f6e3a55a0a85919c8773759e9     
v.穿过( penetrate的第三人称单数 );刺入;了解;渗透
参考例句:
  • This is a telescope that penetrates to the remote parts of the universe. 这是一架能看到宇宙中遥远地方的望远镜。 来自《简明英汉词典》
  • The dust is so fine that it easily penetrates all the buildings. 尘土极细,能极轻易地钻入一切建筑物。 来自辞典例句
138 monstrous vwFyM     
adj.巨大的;恐怖的;可耻的,丢脸的
参考例句:
  • The smoke began to whirl and grew into a monstrous column.浓烟开始盘旋上升,形成了一个巨大的烟柱。
  • Your behaviour in class is monstrous!你在课堂上的行为真是丢人!
139 twigs 17ff1ed5da672aa443a4f6befce8e2cb     
细枝,嫩枝( twig的名词复数 )
参考例句:
  • Some birds build nests of twigs. 一些鸟用树枝筑巢。
  • Willow twigs are pliable. 柳条很软。
140 prostrate 7iSyH     
v.拜倒,平卧,衰竭;adj.拜倒的,平卧的,衰竭的
参考例句:
  • She was prostrate on the floor.她俯卧在地板上。
  • The Yankees had the South prostrate and they intended to keep It'so.北方佬已经使南方屈服了,他们还打算继续下去。
141 erect 4iLzm     
n./v.树立,建立,使竖立;adj.直立的,垂直的
参考例句:
  • She held her head erect and her back straight.她昂着头,把背挺得笔直。
  • Soldiers are trained to stand erect.士兵们训练站得笔直。
142 amputation GLPyJ     
n.截肢
参考例句:
  • In ancient India,adultery was punished by amputation of the nose.在古代印度,通奸要受到剖鼻的处罚。
  • He lived only hours after the amputation.截肢后,他只活了几个小时。
143 primitive vSwz0     
adj.原始的;简单的;n.原(始)人,原始事物
参考例句:
  • It is a primitive instinct to flee a place of danger.逃离危险的地方是一种原始本能。
  • His book describes the march of the civilization of a primitive society.他的著作描述了一个原始社会的开化过程。
144 revert OBwzV     
v.恢复,复归,回到
参考例句:
  • Let us revert to the earlier part of the chapter.让我们回到本章的前面部分。
  • Shall we revert to the matter we talked about yesterday?我们接着昨天谈过的问题谈,好吗?
145 primordial 11PzK     
adj.原始的;最初的
参考例句:
  • It is the primordial force that propels us forward.它是推动我们前进的原始动力。
  • The Neanderthal Man is one of our primordial ancestors.的尼安德特人是我们的原始祖先之一.
146 elongates bf5f08cbe6590609cc758ad669b93c61     
v.延长,加长( elongate的第三人称单数 )
参考例句:
  • Acropetal differentiation of the cambium layer continues as the primary root elongates. 形成层的向顶分化像初生根伸长一样在继续进行。 来自辞典例句
  • At the onset of germination, the hypocotyl elongates rapidly by cell enlargement. 萌发开始时,下胚轴依靠细胞增大而迅速伸长。 来自辞典例句
147 insignificant k6Mx1     
adj.无关紧要的,可忽略的,无意义的
参考例句:
  • In winter the effect was found to be insignificant.在冬季,这种作用是不明显的。
  • This problem was insignificant compared to others she faced.这一问题与她面临的其他问题比较起来算不得什么。
148 exquisitely Btwz1r     
adv.精致地;强烈地;剧烈地;异常地
参考例句:
  • He found her exquisitely beautiful. 他觉得她异常美丽。 来自《简明英汉词典》
  • He wore an exquisitely tailored gray silk and accessories to match. 他穿的是做工非常考究的灰色绸缎衣服,还有各种配得很协调的装饰。 来自教父部分
149 strictly GtNwe     
adv.严厉地,严格地;严密地
参考例句:
  • His doctor is dieting him strictly.他的医生严格规定他的饮食。
  • The guests were seated strictly in order of precedence.客人严格按照地位高低就座。
150 margin 67Mzp     
n.页边空白;差额;余地,余裕;边,边缘
参考例句:
  • We allowed a margin of 20 minutes in catching the train.我们有20分钟的余地赶火车。
  • The village is situated at the margin of a forest.村子位于森林的边缘。
151 prevailing E1ozF     
adj.盛行的;占优势的;主要的
参考例句:
  • She wears a fashionable hair style prevailing in the city.她的发型是这个城市流行的款式。
  • This reflects attitudes and values prevailing in society.这反映了社会上盛行的态度和价值观。
152 penetrated 61c8e5905df30b8828694a7dc4c3a3e0     
adj. 击穿的,鞭辟入里的 动词penetrate的过去式和过去分词形式
参考例句:
  • The knife had penetrated his chest. 刀子刺入了他的胸膛。
  • They penetrated into territory where no man had ever gone before. 他们已进入先前没人去过的地区。
153 larvae w2CxP     
n.幼虫
参考例句:
  • Larvae are parasitic on sheep.幼虫寄生在绵羊的身上。
  • The larvae prey upon small aphids.这种幼虫以小蚜虫为食。
154 burrowing 703e0bb726fc82be49c5feac787c7ae5     
v.挖掘(洞穴),挖洞( burrow的现在分词 );翻寻
参考例句:
  • What are you burrowing around in my drawer for? 你在我抽屉里乱翻什么? 来自《简明英汉词典》
  • The forepaws are also used for burrowing and for dragging heavier logs. 它们的前爪还可以用来打洞和拖拽较重的树干。 来自辞典例句
155 burrow EsazA     
vt.挖掘(洞穴);钻进;vi.挖洞;翻寻;n.地洞
参考例句:
  • Earthworms burrow deep into the subsoil.蚯蚓深深地钻进底土。
  • The dog had chased a rabbit into its burrow.狗把兔子追进了洞穴。
156 advantageous BK5yp     
adj.有利的;有帮助的
参考例句:
  • Injections of vitamin C are obviously advantageous.注射维生素C显然是有利的。
  • You're in a very advantageous position.你处于非常有利的地位。
157 insufficient L5vxu     
adj.(for,of)不足的,不够的
参考例句:
  • There was insufficient evidence to convict him.没有足够证据给他定罪。
  • In their day scientific knowledge was insufficient to settle the matter.在他们的时代,科学知识还不能足以解决这些问题。
158 penetration 1M8xw     
n.穿透,穿人,渗透
参考例句:
  • He is a man of penetration.他是一个富有洞察力的人。
  • Our aim is to achieve greater market penetration.我们的目标是进一步打入市场。
159 conversion UZPyI     
n.转化,转换,转变
参考例句:
  • He underwent quite a conversion.他彻底变了。
  • Waste conversion is a part of the production process.废物处理是生产过程的一个组成部分。
160 crevices 268603b2b5d88d8a9cc5258e16a1c2f8     
n.(尤指岩石的)裂缝,缺口( crevice的名词复数 )
参考例句:
  • It has bedded into the deepest crevices of the store. 它已钻进了店里最隐避的隙缝。 来自辞典例句
  • The wind whistled through the crevices in the rock. 风呼啸着吹过岩石的缝隙。 来自辞典例句
161 burrows 6f0e89270b16e255aa86501b6ccbc5f3     
n.地洞( burrow的名词复数 )v.挖掘(洞穴),挖洞( burrow的第三人称单数 );翻寻
参考例句:
  • The intertidal beach unit contains some organism burrows. 潮间海滩单元含有一些生物潜穴。 来自辞典例句
  • A mole burrows its way through the ground. 鼹鼠会在地下钻洞前进。 来自辞典例句
162 discriminate NuhxX     
v.区别,辨别,区分;有区别地对待
参考例句:
  • You must learn to discriminate between facts and opinions.你必须学会把事实和看法区分出来。
  • They can discriminate hundreds of colours.他们能分辨上百种颜色。
163 discriminated 94ae098f37db4e0c2240e83d29b5005a     
分别,辨别,区分( discriminate的过去式和过去分词 ); 歧视,有差别地对待
参考例句:
  • His great size discriminated him from his followers. 他的宽广身材使他不同于他的部下。
  • Should be a person that has second liver virus discriminated against? 一个患有乙肝病毒的人是不是就应该被人歧视?
164 extraordinarily Vlwxw     
adv.格外地;极端地
参考例句:
  • She is an extraordinarily beautiful girl.她是个美丽非凡的姑娘。
  • The sea was extraordinarily calm that morning.那天清晨,大海出奇地宁静。
165 diversified eumz2W     
adj.多样化的,多种经营的v.使多样化,多样化( diversify的过去式和过去分词 );进入新的商业领域
参考例句:
  • The college biology department has diversified by adding new courses in biotechnology. 该学院生物系通过增加生物技术方面的新课程而变得多样化。 来自《简明英汉词典》
  • Take grain as the key link, develop a diversified economy and ensure an all-round development. 以粮为纲,多种经营,全面发展。 来自《现代汉英综合大词典》
166 stimuli luBwM     
n.刺激(物)
参考例句:
  • It is necessary to curtail or alter normally coexisting stimuli.必需消除或改变正常时并存的刺激。
  • My sweat glands also respond to emotional stimuli.我的汗腺对情绪刺激也能产生反应。
167 mole 26Nzn     
n.胎块;痣;克分子
参考例句:
  • She had a tiny mole on her cheek.她的面颊上有一颗小黑痣。
  • The young girl felt very self- conscious about the large mole on her chin.那位年轻姑娘对自己下巴上的一颗大痣感到很不自在。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533