小说搜索     点击排行榜   最新入库
首页 » 经典英文小说 » The Power of Movement in Plants » CHAPTER IV. THE CIRCUMNUTATING MOVEMENTS OF THE SEVERAL PARTS OF MATURE PLANTS.
选择底色: 选择字号:【大】【中】【小】
CHAPTER IV. THE CIRCUMNUTATING MOVEMENTS OF THE SEVERAL PARTS OF MATURE PLANTS.
关注小说网官方公众号(noveltingroom),原版名著免费领。
   Circumnutation of stems: concluding remarks on—Circumnutation of stolons:
  aid thus afforded in winding1 amongst the stems of surrounding plants—
  Circumnutation of flower-stems—Circumnutation of Dicotyledonous leaves—
  Singular oscillatory movement of leaves of Dionaea—Leaves of Cannabis sink
  at night—Leaves of Gymnosperms—Of Monocotyledons—Cryptogams—Concluding
  remarks on the circumnutation of leaves; generally rise in the evening and
  sink in the morning.
WE have seen in the first chapter that the stems of all seedlings2, whether hypocotyls or epicotyls, as well as the cotyledons and the radicles, are continually circumnutating—that is they grow first on one side and then on another, such growth being probably preceded by increased turgescence of the cells. As it was unlikely that plants should change their manner of growth with advancing age, it seemed probable that the various organs of all plants at all ages, as long as they continued to grow, would be found to circumnutate, though perhaps to an extremely small extent. As it was important for us to discover whether this was the case, we determined4 to observe carefully a certain number of plants which were growing vigorously, and which were not known to move in any manner. We commenced with stems. Observations of this kind are tedious, and it appeared to us that it would be sufficient to observe the stems in about a score of genera, belonging to widely distinct families and inhabitants of various countries. Several plants [page 202] were selected which, from being woody, or for other reasons, seemed the least likely to circumnutate. The observations and the diagrams were made in the manner described in the Introduction. Plants in pots were subjected to a proper temperature, and whilst being observed, were kept either in darkness or were feebly illuminated6 from above. They are arranged in the order adopted by Hooker in Le Maout and Decaisne's 'System of Botany.' The number of the family to which each genus belongs is appended, as this serves to show the place of each in the series.
 
[(1.) Iberis umbellata (Cruciferae, Fam. 14).—The movement of the stem of a young plant, 4 inches in height, consisting of four internodes (the hypocotyl included) besides a large bud
 
Fig7. 70. Iberis umbellata: circumnutation of stem of young plant, traced from 8.30 A.M. Sept. 13th to same hour on following morning. Distance of summit of stem beneath the horizontal glass 7.6 inches. Diagram reduced to half of original size. Movement as here shown magnified between 4 and 5 times.
 
on the summit, was traced, as here shown, during 24 h. (Fig. 70). As far as
we could judge the uppermost inch alone of the stem circumnutated, and this
in a simple manner. The movement was slow, and the rate very unequal at
different times. In part of its course an irregular ellipse, or rather
triangle, was completed in 6 h. 30 m.
 
 (2.) Brassica oleracea (Cruciferae).—A very young plant, bearing three
leaves, of which the longest was only three-quarters of an inch in length,
was placed under a microscope, furnished with an eye-piece micrometer, and
the tip of the largest leaf was
[page 203]
found to be in constant movement. It crossed five divisions of the
micrometer, that is, 1/100th of an inch, in 6 m. 20 s. There could hardly
be a doubt that it was the stem which chiefly moved, for the tip did not
get quickly out of focus; and this would have occurred had the movement
been confined to the leaf, which moves up or down in nearly the same
vertical9 plane.
(3.) Linum usitatissimum (Lineae, Fam. 39).—The stems of this plant, shortly before the flowering period, are stated by Fritz Müller ('Jenaische Zeitschrift,' B. v. p. 137) to revolve11, or circumnutate.
 
(4.) Pelargonium zonale (Geraniaceae, Fam. 47).—A young plant, 7 ? inches in height, was observed in the usual manner; but, in order to see the bead12 at the end of the glass filament13
 
Fig. 71. Pelargonium zonale: circumnutation of stem of young plant, feebly illuminated from above. Movement of bead magnified about 11 times; traced on a horizontal glass from noon on March 9th to 8 A.M. on the 11th.
 
and at the same time the mark beneath, it was necessary to cut off three
leaves on one side. We do not know whether it was owing to this cause, or
to the plant having previously14 become bent15 to one side through
heliotropism, but from the morning of the 7th of March to 10.30 P.M. on the
8th, the stem moved a considerable distance in a zigzag16 line in the same
general direction. During the night of the 8th it moved to some distance at
right angles to its former course, and next morning (9th) stood for a time
almost still. At noon on the 9th a new tracing was begun (see Fig. 71),
which was continued till 8 A.M. on the 11th. Between noon on the 9th and 5
P.M. on the 10th (i.e. in the course of 29 h.), the stem described a
circle. This plant therefore circumnutates, but at a very slow rate, and to
a small extent.
 
 (5.) Tropaeolum majus (?) (dwarfed var. called Tom Thumb); (Geraniaceae,
Fam. 47).—The species of this genus climb by the
[page 204]
aid of their sensitive petioles, but some of them also twine18 round
supports; but even these latter species do not begin to circumnutate in a
conspicuous19 manner whilst young. The
Fig. 72. Tropaeolum majus (?): circumnutation of stem of young plant, traced on a horizontal glass from 9 A.M. Dec. 26th to 10 A.M. on 27th. Movement of bead magnified about 5 times, and here reduced to half of original scale.
 
variety here treated of has a rather thick stem, and is so dwarf17 that apparently20 it does not climb in any manner. We therefore wished to ascertain21 whether the stem of a young plant, consisting of two internodes, together 3.2 inches in height, circumnutated. It was observed during 25 h., and we see in Fig. 72 that the stem moved in a zigzag course, indicating circumnutation.
 
Fig. 73. Trifolium resupinatum: circumnutation of stem, traced on vertical
glass from 9.30 A.M. to 4.30 P.M. Nov. 3rd. Tracing not greatly magnified,
reduced to half of original size. Plant feebly illuminated from above.
 
 (6.) Trifolium resupinatum (Leguminosae, Fam. 75).—When we treat of the
sleep of plants, we shall see that the stems in several Leguminous genera,
for instance, those of Hedysarum, Mimosa, Melilotus, etc., which are not
climbers, circumnutate in a conspicuous manner. We will here give only a
single instance (Fig. 73), showing the circumnutation of the stem of a
large plant of a clover, Trifolium resupinatum. In the course of 7 h. the
stem changed
[page 205]
its course greatly eight times and completed three irregular circles or
ellipses22. It therefore circumnutated rapidly. Some of the lines run at
right angles to one another.
Fig. 74. Rubus (hybrid23): circumnutation of stem, traced on horizontal
glass, from 4 P.M. March 14th to 8.30 A.M. 16th. Tracing much magnified,
reduced to half of original size. Plant illuminated feebly from above.
 
 (7.) Rubus idaeus (hybrid) (Rosaceae, Fam. 76).—As we happened to have a
young plant, 11 inches in height and growing vigorously, which had been
raised from a cross between the raspberry (Rubus idaeus) and a North
American Rubus, it was observed in the usual manner. During the morning of
March 14th the stem almost completed a circle, and then moved far to the
right. At 4 P.M. it reversed its course, and now a fresh tracing was begun,
which was continued during 40 ? h., and is given in Fig. 74. We here have
well-marked circumnutation.
(8.) Deutzia gracilis (Saxifrageae, Fam. 77).—A shoot on a bush about 18 inches in height was observed. The bead changed its course greatly eleven times in the course of 10 h. 30 m. (Fig. 75), and there could be no doubt about the circumnutation of the stem.
 
Fig. 75. Deutzia gracilis: circumnutation of stem, kept in darkness, traced on horizontal glass, from 8.30 A.M. to 7 P.M. March 20th. Movement of bead originally magnified about 20 times, here reduced to half scale.
 
(9.) Fuchsia (greenhouse var., with large flowers, probably a hybrid) (Onagrarieae, Fam. 100).—A young plant, 15 inches in height, was observed during nearly 48 h. The [page 206] accompanying figure (Fig. 76) gives the necessary particulars, and shows that the stem circumnutated, though rather slowly.
 
Fig. 76. Fuchsia (garden var.): circumnutation of stem, kept in darkness, traced on horizontal glass, from 8.30 A.M. to 7 P.M. March 20th. Movement of bead originally magnified about 40 times, here reduced to half scale.
 
(10.) Cereus speciocissimus (garden var., sometimes called Phyllocactus multiflorus) (Cacteae, Fam. 109).—This plant, which was growing vigorously from having been removed a few days before from the greenhouse to the hot-house, was observed with especial interest, as it seemed so little probable that the stem would circumnutate. The branches are flat, or flabelliform; but some of them are triangular24 in section, with the three sides hollowed out. A branch of this latter shape, 9 inches in length and 1 ? in diameter, was chosen for observation, as less likely to circumnutate than a flabelliform branch. The movement of the bead at the end of the glass filament, affixed25 to the summit of the branch, was traced (A, Fig. 77) from 9.23 A.M. to 4.30 P.M. on Nov. 23rd, during which time it changed its course greatly six times. On the 24th another tracing was made (see B), and the bead on this day changed its course oftener, making in 8 h. what may be considered as four ellipses, with their longer axes differently directed. The position of the stem and its commencing course on the following morning are likewise shown. There can be no doubt that this branch, though appearing quite rigid27, circumnutated; but the [page 207] extreme amount of movement during the time was very small, probably rather less than the 1/20th of an inch.
 
Fig 77. Cereus speciocissimus: circumnutation of stem, illuminated from above, traced on a horizontal glass, in A from 9 A.M. to 4.30 P.M. on Nov. 23rd; and in B from 8.30 A.M. on the 24th to 8 A.M. on the 25th. Movement of the bead in B magnified about 38 times.
 
(11.) Hedera helix (Araliaceae, Fam. 114).—The stem is known to be apheliotropic, and several seedlings growing in a pot in the greenhouse became bent in the middle of the summer at right angles from the light. On Sept. 2nd some of these stems were tied up so as to stand vertically28, and were placed before a north-east window; but to our surprise they were now decidedly heliotropic, for during 4 days they curved themselves towards the light, and their course being traced on a horizontal glass, was strongly zigzag. During the 6 succeeding days they circumnutated over the same small space at a slow rate, but there could be no doubt about their circumnutation. The plants were kept exactly in the same place before the window, and after an interval29 of 15 days the stems were again observed during 2 days and their movements traced, and [page 208] they were found to be still circumnutating, but on a yet smaller scale.
 
(12.) Gazania ringens (Compositae, Fam. 122).—The circumnutation of the stem of a young plant, 7 inches in height, as measured to the tip of the highest leaf, was traced during 33 h., and is shown in the accompanying figure (Fig. 78). Two
 
Fig. 78. Gazania ringens: circumnutation of stem traced from 9 A.M. March 21st to 6 P.M. on 22nd; plant kept in darkness. Movement of bead at the close of the observations magnified 34 times, here reduced to half the original scale.
 
main lines may be observed running at nearly right angles to two other main lines; but these are interrupted by small loops.
 
(13.) Azalea Indica (Ericineae, Fam. 128).—A bush 21 inches in height was
selected for observation, and the circumnutation of its leading shoot was
traced during 26 h. 40 m., as shown in the following figure (Fig. 79).
 
 (14.) Plumbago Capensis (Plumbagineae, Fam. 134).—A small lateral30 branch
which projected from a tall freely growing bush, at an angle of 35o above
the horizon, was selected for observation. For the first 11 h. it moved to
a considerable distance in a nearly straight line to one side, owing
probably to its having been previously deflected31 by the light whilst
standing32 in the greenhouse. At 7.20 P.M. on March 7th a fresh tracing was
begun and continued for the next 43 h. 40 m. (see Fig. 80). During the
first 2 h. it followed nearly the same direction as before, and then
changed it a little; during the night it moved at nearly right angles to
its previous course. Next
[page 209]
day (8th) it zigzagged33 greatly, and on the 9th moved irregularly round and
round a small circular space. By 3 P.M. on the 9th the figure had become so
complicated that no more dots could be made; but the shoot continued during
the evening of the 9th, the whole of the 10th, and the morning of the 11th
to
Fig. 79. Azalea Indica: circumnutation of stem, illuminated from above, traced on horizontal glass, from 9.30 A.M. March 9th to 12.10 P.M. on the 10th. But on the morning of the 10th only four dots were made between 8.30 A.M. and 12.10 P.M., both hours included, so that the circumnutation is not fairly represented in this part of the diagram. Movement of the bead here magnified about 30 times.
 
Fig. 80. Plumbago Capensis: circumnutation of tip of a lateral branch, traced on horizontal glass, from 7.20 P.M. on March 7th to 3 P.M. on the 9th. Movement of bead magnified 13 times. Plant feebly illuminated from above.
 
circumnutate over the same small space, which was only about the 1/26th of an inch (.97 mm.) in diameter. Although this branch circumnutated to a very small extent, yet it changed its course frequently. The movements ought to have been more magnified.
 
(15.) Aloysia citriodora (Verbenaceae, Fam. 173).—The following figure (Fig. 81) gives the movements of a shoot during [page 210] 31 h. 40 m., and shows that it circumnutated. The bush was 15 inches in height.
 
Fig. 81. Aloysia citriodora: circumnutation of stem, traced from 8.20 A.M. on March 22nd to 4 P.M. on 23rd. Plant kept in darkness. Movement magnified about 40 times.
 
(16.) Verbena melindres (?) (a scarlet-flowered herbaceous var.) (Verbenaceae).—A shoot 8 inches in height had been laid horizontally, for the sake of observing its apogeotropism, and the terminal portion had grown vertically upwards34 for a length of 1 ? inch. A glass filament, with a bead at the end, was fixed26
 
Fig. 82. Verbena melindres: circumnutation of stem in darkness, traced on vertical glass, from 5.30 P.M. on June 5th to 11 A.M. June 7th. Movement of bead magnified 9 times.
 
upright to the tip, and its movements were traced during 41 h. 30 m. on a
vertical glass (Fig. 82). Under these circumstances the lateral movements
were chiefly shown; but as the lines from side to side are not on the same
level, the shoot
[page 211]
must have moved in a plane at right angles to that of the lateral movement,
that is, it must have circumnutated. On the next day (6th) the shoot moved
in the course of 16 h. four times to the right, and four times to the left;
and this apparently represents the formation of four ellipses, so that each
was completed in 4 h.
(17.) Ceratophyllum demersum (Ceratophylleae, Fam. 220).—An interesting
account of the movements of the stem of this water-plant has been published
by M. E. Rodier.* The movements are confined to the young internodes,
becoming less and less lower down the stem; and they are extraordinary from
their amplitude35. The stems sometimes moved through an angle of above 200o
in 6 h., and in one instance through 220o in 3 h. They generally bent from
right to left in the morning, and in an opposite direction in the
afternoon; but the movement was sometimes temporarily reversed or quite
arrested. It was not affected36 by light. It does not appear that M. Rodier
made any diagram on a horizontal plane representing the actual course
pursued by the apex37, but he speaks of the "branches executing round their
axes of growth a movement of torsion." From the particulars above given,
and remembering in the case of twining plants and of tendrils, how
difficult it is not to mistake their bending to all points of the compass
for true torsion, we are led to believe that the stems of this
Ceratophyllum circumnutate, probably in the shape of narrow ellipses, each
completed in about 26 h. The following statement, however, seems to
indicate something different from ordinary circumnutation, but we cannot
fully5 understand it. M. Rodier says: "Il est alors facile de voir que le
mouvement de flexion se produit d'abord dans les mérithalles supérieurs,
qu'il se propage ensuite, en s'amoindrissant du haut en bas; tandis qu'au
contraire le movement de redressement commence par8 la partie inférieur pour
se terminer a la partie supérieure qui, quelquefois, peu de temps avant de
se relever tout38 à fait, forme avec l'axe un angle très aigu."
 
 (18.) Coniferae.—Dr. Maxwell Masters states ('Journal Linn. Soc.,' Dec.
2nd, 1879) that the leading shoots of many Coniferae during the season of
their active growth exhibit very remarkable39 movements of revolving40
nutation, that is, they circumnutate. We may feel sure that the lateral
shoots whilst growing would exhibit the same movement if carefully
observed.
* 'Comptes Rendus,' April 30th, 1877. Also a second notice published separately in Bourdeaux, Nov. 12th, 1877. [page 212]
 
(19.) Lilium auratum (Fam. Liliaceae).—The circumnutation
 
Fig. 83. Lilium auratum: circumnutation of a stem in darkness, traced on a horizontal glass, from 8 A.M. on March 14th to 8.35 A.M. on 16th. But it should be noted41 that our observations were interrupted between 6 P.M. on the 14th and 12.15 P.M. on the 15th, and the movements during this interval of 18 h. 15 m. are represented by a long broken line. Diagram reduced to half original scale.
 
of the stem of a plant 24 inches in height is represented in the above figure (Fig. 83).
 
Fig. 84. Cyperus alternifolius: circumnutation of stem, illuminated from
above, traced on horizontal glass, from 9.45 A.M. March 9th to 9 P.M. on
10th. The stem grew so rapidly whilst being observed, that it was not
possible to estimate how much its movements were magnified in the tracing.
 
 (20.) Cyperus alternifolius (Fam. Cyperaceae.)—A glass
[page 213]
filament, with a bead at the end, was fixed across the summit of a young
stem 10 inches in height, close beneath the crown of elongated42 leaves. On
March 8th, between 12.20 and 7.20 P.M. the stem described an ellipse, open
at one end. On the following day a new tracing was begun (Fig. 84), which
plainly shows that the stem completed three irregular figures in the course
of 35 h. 15 m.]
Concluding Remarks on the Circumnutation of Stems.—Any one who will inspect the diagrams now given, and will bear in mind the widely separated position of the plants described in the series,—remembering that we have good grounds for the belief that the hypocotyls and epicotyls of all seedlings circumnutate,—not forgetting the number of plants distributed in the most distinct families which climb by a similar movement,—will probably admit that the growing stems of all plants, if carefully observed, would be found to circumnutate to a greater or less extent. When we treat of the sleep and other movements of plants, many other cases of circumnutating stems will be incidentally given. In looking at the diagrams, we should remember that the stems were always growing, so that in each case the circumnutating apex as it rose will have described a spire43 of some kind. The dots were made on the glasses generally at intervals44 of an hour, or hour and a half, and were then joined by straight lines. If they had been made at intervals of 2 or 3 minutes, the lines would have been more curvilinear, as in the case of the tracks left on the smoked glass-plates by the tips of the circumnutating radicles of seedling3 plants. The diagrams generally approach in form to a succession of more or less irregular ellipses or ovals, with their longer axes directed to different points of the compass during the same day or on succeeding days. The stems there- [page 214] fore10, sooner or later, bend to all sides; but after a stem has bent in any one direction, it commonly bends back at first in nearly, though not quite, the opposite direction; and this gives the tendency to the formation of ellipses, which are generally narrow, but not so narrow as those described by stolons and leaves. On the other hand, the figures sometimes approach in shape to circles. Whatever the figure may be, the course pursued is often interrupted by zigzags45, small triangles, loops, or ellipses. A stem may describe a single large ellipse one day, and two on the next. With different plants the complexity46, rate, and amount of movement differ much. The stems, for instance, of Iberis and Azalea described only a single large ellipse in 24 h.; whereas those of the Deutzia made four or five deep zigzags or narrow ellipses in 11 ? h., and those of the Trifolium three triangular or quadrilateral figures in 7 h.
 
CIRCUMNUTATION OF STOLONS OR RUNNERS.
 
Stolons consist of much elongated, flexible branches, which run along the surface of the ground and form roots at a distance from the parent-plant. They are therefore of the same homological nature as stems; and the three following cases may be added to the twenty previously given cases.
 
[Fragaria (cultivated garden var.): Rosaceae.—A plant growing in a pot had emitted a long stolon; this was supported by a stick, so that it projected for the length of several inches horizontally. A glass filament bearing two minute triangles of paper was affixed to the terminal bud, which was a little upturned; and its movements were traced during 21 h., as shown in Fig. 85. In the course of the first 12 h. it moved twice up and twice down in somewhat zigzag lines, and no doubt travelled in the same manner during the night. On the following [page 215] morning after an interval of 20 h. the apex stood a little higher than it did at first, and this shows that the stolon had not been Fig. 85. Fragaria: circumnutation of stolon, kept in darkness, traced on vertical glass, from 10.45 A.M. May 18th to 7.45 A.M. on 19th.
 
acted on within this time by geotropism;* nor had its own weight caused it to bend downwards47.
 
On the following morning (19th) the glass filament was detached and refixed close behind the bud, as it appeared possible that the circumnutation of the terminal bud and of the adjoining part of the stolon might be different. The movement was now traced during two consecutive48 days (Fig. 86). During the first day the filament travelled in the course of 14 h. 30 m. five times up and four times down, besides some lateral movement. On the 20th the course was even more complicated, and can hardly be followed in the figure; but the filament moved in 16 h. at least five times up and five times down, with very little
 
* Dr. A. B. Frank states ('Die Naturliche wagerechte Richtung von Pflanzentheilen,' 1870, p. 20) that the stolons of this plant are acted on by geotropism, but only after a considerable interval of time. [page 216]
 
lateral deflection. The first and last dots made on this second day, viz., at 7 A.M. and 11 P.M., were close together, showing that the stolon had not fallen or risen. Nevertheless, by comparing its position on the morning of the 19th and 21st, it is obvious that the stolon had sunk; and this may be attributed to slow bending down either from its own weight or from geotropism.
 
Fig. 86. Fragaria: circumnutation of the same stolon as in the last figure, observed in the same manner, and traced from 8 A.M. May 19th to 8 A.M. 21st.
 
During a part of the 20th an orthogonal tracing was made by applying a cube of wood to the vertical glass and bringing the apex of the stolon at successive periods into a line with one edge; a dot being made each time on the glass. This tracing therefore represented very nearly the actual amount of movement of the apex; and in the course of 9 h. the distance of the extreme dots from one another was .45 inch. By the same method it was ascertained49 that the apex moved between 7 A.M. on the 20th and 8 A.M. on the 21st a distance of .82 inch.
 
A younger and shorter stolon was supported so that it projected at about 45o above the horizon, and its movement was traced by the same orthogonal method. On the first day the apex soon rose above the field of vision. By the next morning it had sunk, and the course pursued was now traced during 14 h. 30 m. (Fig. 87). The amount of movement was almost the same, [page 217] from side to side as up and down; and differed in this respect remarkably50 from the movement in the previous cases. During the latter part of the day, viz., between 3 and 10.30 P.M., the
 
Fig. 87. Fragaria: circumnutation of another and younger stolon, traced from 8 A.M. to 10.30 P.M. Figure reduced to one-half of original scale.
 
actual distance travelled by the apex amounted to 1.15 inch; and in the course of the whole day to at least 2.67 inches. This is an amount of movement almost comparable with that of some climbing plants. The same stolon was observed on the following day, and now it moved in a somewhat less complex manner, in a plane not far from vertical. The extreme amount of actual movement was 1.55 inch in one direction, and .6 inch in another direction at right angles. During neither of these days did the stolon bend downwards through geotropism or its own weight.
 
Four stolons still attached to the plant were laid on damp sand in the back of a room, with their tips facing the north-east windows. They were thus placed because De Vries says* that they are apheliotropic when exposed to the light of the sun; but we could not perceive any effect from the above feeble degree of illumination. We may add that on another occasion, late in the summer, some stolons, placed upright before a south-west window
 
* 'Arbeiten Bot Inst., Würzburg,' 1872, p. 434. [page 218]
 
on a cloudy day, became distinctly curved towards the light, and were therefore heliotropic. Close in front of the tips of the prostrate51 stolons, a crowd of very thin sticks and the dried haulms of grasses were driven into the sand, to represent the crowded stems of surrounding plants in a state of nature. This was done for the sake of observing how the growing stolons would pass through them. They did so easily in the course of 6 days, and their circumnutation apparently facilitated their passage. When the tips encountered sticks so close together that they could not pass between them, they rose up and passed over them. The sticks and haulms were removed after the passage of the four stolons, two of which were found to have assumed a permanently52 sinuous53 shape, and two were still straight. But to this subject we shall recur54 under Saxifraga.
 
Saxifraga sarmentosa (Saxifrageae).—A plant in a suspended pot had emitted long branched stolons, which depended like
 
Fig. 88. Saxifraga sarmentosa: circumnutation of an inclined stolon, traced in darkness on a horizontal glass, from 7.45 A.M. April 18th to 9 A.M. on 19th. Movement of end of stolon magnified 2.2 times.
 
threads on all sides. Two were tied up so as to stand vertically, and their upper ends became gradually bent downwards, but so slowly in the course of several days, that the bending was probably due to their weight and not to geotropism. A glass filament with little triangles of paper was fixed to the end of one of these stolons, which was 17 ? inches in length, and had already become much bent down, but still projected at a considerable angle above the horizon. It moved only slightly three times from side to side and then upwards; on the following day [page 219] the movement was even less. As this stolon was so long we thought that its growth was nearly completed, so we tried another which was thicker and shorter, viz., 10 1/4 inches in length. It moved greatly, chiefly upwards, and changed its course five times in the course of the day. During the night it curved so much upwards in opposition55 to gravity, that the movement could no longer be traced on the vertical glass, and a horizontal one had to be used. The movement was followed during the next 25 h., as shown in Fig. 88. Three irregular ellipses, with their longer axes somewhat differently directed, were almost completed in the first 15 h. The extreme actual amount of movement of the tip during the 25 h. was .75 inch. Several stolons were laid on a flat surface of damp sand, in the same manner as with those of the strawberry. The friction56 of the sand did not interfere57 with their circumnutation; nor could we detect any evidence of their being sensitive to contact. In order to see how in a state of nature they would act, when encountering a stone or other obstacle on the ground, short pieces of smoked glass, an inch in height, were stuck upright into the sand in front of two thin lateral branches. Their tips scratched the smoked surface in various directions; one made three upward and two downward lines, besides a nearly horizontal one; the other curled quite away from the glass; but ultimately both surmounted58 the glass and pursued their original course. The apex of a third thick stolon swept up the glass in a curved line, recoiled59 and again came into contact with it; it then moved to the right, and after ascending61, descended63 vertically; ultimately it passed round one end of the glass instead of over it.
 
Many long pins were next driven rather close together into the sand, so as to form a crowd in front of the same two thin lateral branches; but these easily wound their way through the crowd. A thick stolon was much delayed in its passage; at one place it was forced to turn at right angles to its former course; at another place it could not pass through the pins, and the hinder part became bowed; it then curved upwards and passed through an opening between the upper part of some pins which happened to diverge64; it then descended and finally emerged through the crowd. This stolon was rendered permanently sinuous to a slight degree, and was thicker where sinuous than elsewhere, apparently from its longitudinal growth having been checked.
 
Cotyledon umbilicus (Crassulaceae).—A plant growing in a pan [page 220] of damp moss65 had emitted 2 stolons, 22 and 20 inches in length. One of these was supported, so that a length of 4 ? inches projected in a straight and horizontal line, and the movement of the apex was traced. The first dot was made at 9.10 A.M.;
 
Fig. 89. Cotyledon umbilicus: circumnutation of stolon, traced from 11.15 A.M. Aug. 25th to 11 A.M. 27th. Plant illuminated from above. The terminal internode was .25 inch in length, the penultimate 2.25 and the third 3.0 inches in length. Apex of stolon stood at a distance of 5.75 inches from the vertical glass; but it was not possible to ascertain how much the tracing was magnified, as it was not known how great a length of the internode circumnutated.
 
the terminal portion soon began to bend downwards and continued to do so until noon. Therefore a straight line, very nearly as long as the whole figure here given (Fig. 89), was first traced on the glass; but the upper part of this line has not been copied in the diagram. The curvature occurred in the middle [page 221] of the penultimate internode; and its chief seat was at the distance of 1 1/4 inch from the apex; it appeared due to the weight of the terminal portion, acting66 on the more flexible part of the internode, and not to geotropism. The apex after thus sinking down from 9.10 A.M. to noon, moved a little to the left; it then rose up and circumnutated in a nearly vertical plane until 10.35 P.M. On the following day (26th) it was ob-
 
Fig. 90. Cotyledon umbilicus: circumnutation and downward movement of another stolon, traced on vertical glass, from 9.11 A.M. Aug. 25th to 11 A.M. 27th. Apex close to glass, so that figure but little magnified, and here reduced to two-thirds of original size.
 
served from 6.40 A.M. to 5.20 P.M., and within this time it moved twice up and twice down. On the morning of the 27th the apex stood as high as it did at 11.30 A.M. on the 25th. Nor did it sink down during the 28th, but continued to circumnutate about the same place.
 
Another stolon, which resembled the last in almost every [page 222] respect, was observed during the same two days, but only two inches of the terminal portion was allowed to project freely and horizontally. On the 25th it continued from 9.10 A.M. to 1.30 P.M. to bend straight downwards, apparently owing to its weight (Fig. 90); but after this hour until 10.35 P.M. it zigzagged. This fact deserves notice, for we here probably see the combined effects of the bending down from weight and of circumnutation. The stolon, however, did not circumnutate when it first began to bend down, as may be observed in the present diagram, and as was still more evident in the last case, when a longer portion of the stolon was left unsupported. On the following day (26th) the stolon moved twice up and twice down, but still continued to fall; in the evening and during the night it travelled from some unknown cause in an oblique67 direction.]
 
We see from these three cases that stolons or runners circumnutate in a very complex manner. The lines generally extend in a vertical plane, and this may probably be attributed to the effect of the weight of the unsupported end of the stolon; but there is always some, and occasionally a considerable, amount of lateral movement. The circumnutation is so great in amplitude that it may almost be compared with that of climbing plants. That the stolons are thus aided in passing over obstacles and in winding between the stems of the surrounding plants, the observations above given render almost certain. If they had not circumnutated, their tips would have been liable to have been doubled up, as often as they met with obstacles in their path; but as it is, they easily avoid them. This must be a considerable advantage to the plant in spreading from its parent-stock; but we are far from supposing that the power has been gained by the stolons for this purpose, for circumnutation seems to be of universal occurrence with all growing parts; but it is not improbable that the amplitude of the movement may have been specially68 increased for this purpose. [page 223]
 
CIRCUMNUTATION OF FLOWER-STEMS.
 
We did not think it necessary to make any special observations on the circumnutation of flower-stems, these being axial in their nature, like stems or stolons; but some were incidentally made whilst attending to other subjects, and these we will here briefly69 give. A few observations have also been made by other botanists70. These taken together suffice to render it probable that all peduncles and sub-peduncles circumnutate whilst growing.
 
[Oxalis carnosa.—The peduncle which springs from the thick and woody stem of this plant bears three or four sub-peduncles.
 
Fig. 91. Oxalis carnosa: flower-stem, feebly illuminated from above, its circumnutation traced from 9 A.M. April 13th to 9 A.M. 15th. Summit of flower 8 inches beneath the horizontal glass. Movement probably magnified about 6 times.
 
A filament with little triangles of paper was fixed within the calyx of a flower which stood upright. Its movements were observed for 48 h.; during the first half of this time the flower was fully expanded, and during the second half withered71. The figure here given (Fig. 91) represents 8 or 9 ellipses. Although the main peduncle circumnutated, and described one large and [page 224] two smaller ellipses in the course of 24 h., yet the chief seat of movement lies in the sub-peduncles, which ultimately bend vertically downwards, as will be described in a future chapter. The peduncles of Oxalis acetosella likewise bend downwards, and afterwards, when the pods are nearly mature, upwards; and this is effected by a circumnutating movement.
 
It may be seen in the above figure that the flower-stem of O. carnosa circumnutated during two days about the same spot. On the other hand, the flower-stem of O. sensitiva undergoes a strongly marked, daily, periodical change of position, when kept at a proper temperature. In the middle of the day it stands vertically up, or at a high angle; in the afternoon it sinks, and in the evening projects horizontally, or almost horizontally, rising again during the night. This movement continues from the period when the flowers are in bud to when, as we believe, the pods are mature: and it ought perhaps to have been included amongst the so-called sleep-movements of plants. A tracing was not made, but the angles were measured at successive periods during one whole day; and these showed that the movement was not continuous, but that the peduncle oscillated up and down. We may therefore conclude that it circumnutated. At the base of the peduncle there is a mass of small cells, forming a well-developed pulvinus, which is exteriorly73 coloured purple and hairy. In no other genus, as far as we know, is the peduncle furnished with a pulvinus. The peduncle of O. Ortegesii behaved differently from that of O. sensitiva, for it stood at a less angle above the horizon in the middle of the day, then in the morning or evening. By 10.20 P.M. it had risen greatly. During the middle of the day it oscillated much up and down.
 
Trifolium subterraneum.—A filament was fixed vertically to the uppermost part of the peduncle of a young and upright flower-head (the stem of the plant having been secured to a stick); and its movements were traced during 36 h. Within this time it described (see Fig. 92) a figure which represents four ellipses; but during the latter part of the time the peduncle began to bend downwards, and after 10.30 P.M. on the 24th it curved so rapidly down, that by 6.45 A.M. on the 25th it stood only 19o above the horizon. It went on circumnutating in nearly the same position for two days. Even after the flower-heads have buried themselves in the ground they continue, as will hereafter be shown, to circumnutate. It will also be seen in the next chapter that the sub-peduncles of the separate flowers of [page 225] Trifolium repens circumnutate in a complicated course during several days. I may add that the gynophore of Arachis hypogoea,
 
Fig. 92. Trifolium subterraneum: main flower-peduncle, illuminated from above, circumnutation traced on horizontal glass, from 8.40 A.M. July 23rd to 10.30 P.M. 24th.
 
which looks exactly like a peduncle, circumnutates whilst growing vertically downwards, in order to bury the young pod in the ground.
 
The movements of the flowers of Cyclamen Persicum were not observed; but the peduncle, whilst the pod is forming, increases much in length, and bows itself down by a circumnutating movement. A young peduncle of Maurandia semperflorens, 1 ? inch in length, was carefully observed during a whole day, and it made 4 ? narrow, vertical, irregular and short ellipses, each at an average rate of about 2 h. 25 m. An adjoining peduncle described during the same time similar, though fewer, ellipses.* According to Sachs** the flower-stems, whilst growing,
 
* 'The Movements and Habits of Climbing Plants,' 2nd edit., 1875, p. 68.
 
** 'Text-Book of Botany,' 1875, [[page 226]] p. 766. Linnaeus and Treviranus (according to Pfeffer, 'Die Periodischen Bewegungen,' etc., p. 162) state that the flower-stalks of many plants occupy different positions by night and day, and we shall see in the chapter on the Sleep of Plants that this implies circumnutation. [page 226]
 
of many plants, for instance, those of Brassica napus, revolve or circumnutate; those of Allium porrum bend from side to side, and, if this movement had been traced on a horizontal glass, no doubt ellipses would have been formed. Fritz Müller has described* the spontaneous revolving movements of the flower-stems of an Alisma, which he compares with those of a climbing plant.
 
We made no observations on the movements of the different parts of flowers. Morren, however, has observed** in the stamens of Sparmannia and Cereus a "fremissement spontané," which, it may be suspected, is a circumnutating movement. The circumnutation of the gynostemium of Stylidium, as described by Gad,*** is highly remarkable, and apparently aids in the fertilisation of the flowers. The gynostemium, whilst spontaneously moving, comes into contact with the viscid labellum, to which it adheres, until freed by the increasing tension of the parts or by being touched.]
 
We have now seen that the flower-stems of plants belonging to such widely different families as the Cruciferae, Oxalidae, Leguminosae, Primulaceae, Scrophularineae, Alismaceae, and Liliaceae, circumnutate; and that there are indications of this movement in many other families. With these facts before us, bearing also in mind that the tendrils of not a few plants consist of modified peduncles, we may admit without much doubt that all growing flower-stems circumnutate.
 
CIRCUMNUTATION OF LEAVES: DICOTYLEDONS.
 
Several distinguished75 botanists, Hofmeister, Sachs, Pfeffer, De Vries, Batalin, Millardet, etc., have ob-
 
* 'Jenaische Zeitsch.,' B. v. p. 133.
 
** 'N. Mem. de l'Acad. R. de Bruxelles,' tom. xiv. 1841, p. 3.
 
*** 'Sitzungbericht des bot. Vereins der P. Brandenburg,' xxi. p. 84. [page 227] served, and some of them with the greatest care, the periodical movements of leaves; but their attention has been chiefly, though not exclusively, directed to those which move largely and are commonly said to sleep at night. From considerations hereafter to be given, plants of this nature are here excluded, and will be treated of separately. As we wished to ascertain whether all young and growing leaves circumnutated, we thought that it would be sufficient if we observed between 30 and 40 genera, widely distributed throughout the vegetable series, selecting some unusual forms and others on woody plants. All the plants were healthy and grew in pots. They were illuminated from above, but the light perhaps was not always sufficiently76 bright, as many of them were observed under a skylight of ground-glass. Except in a few specified77 cases, a fine glass filament with two minute triangles of paper was fixed to the leaves, and their movements were traced on a vertical glass (when not stated to the contrary) in the manner already described. I may repeat that the broken lines represent the nocturnal course. The stem was always secured to a stick, close to the base of the leaf under observation. The arrangement of the species, with the number of the Family appended, is the same as in the case of stems.
 
Fig. 93. Sarracenia purpurea: circumnutation of young pitcher78, traced from 8 A.M. July 3rd to 10.15 A.M. 4th. Temp. 17o - 18o C. Apex of pitcher 20 inches from glass, so movement greatly magnified.
 
(1.) Sarracenia purpurea (Sarraceneae, Fam. 11).—A young leaf, or pitcher, 8 ? inches in height, with the bladder swollen79 but with the hood80 not as yet open, had a filament fixed transversely [page 228] across its apex; it was observed for 48 h., and during the whole of this time it circumnutated in a nearly similar manner, but to a very small extent. The tracing given (Fig. 93) relates only to the movement during the first 26 h.
 
(2) Glaucium luteum (Papaveraceae, Fam. 12).—A young plant, bearing only 8 leaves, had a filament attached to the youngest leaf but one, which was 3 inches in length, including the petiole. The circumnutating movement was traced during 47 h. On both days the leaf descended from before 7 A.M. until about 11 A.M., and then ascended81 slightly during the rest of the day and the early part of the night. During the latter part of the night it fell greatly. It did not ascend60 so much during the second as during the first day, and it descended considerably82 lower on the second night than on the first. This difference was probably due to the illumination from above having been insufficient83 during the two days of observation. Its course during the two days is shown in Fig. 94.
 
Fig. 94. Glaucium luteum: circumnutation of young leaf, traced from 9.30 A.M. June 14th to 8.30 A.M. 16th. Tracing not much magnified, as apex of leaf stood only 5 ? inches from the glass.
 
(3.) Crambe maritima (Cruciferae, Fam. 14).—A leaf 9 ? inches in length on a plant not growing vigorously was first observed. Its apex was in constant movement, but this could hardly be traced, from being so small in extent. The apex, however, certainly changed its course at least 6 times in the course of 14 h. A more vigorous young plant, bearing only 4 leaves, was then selected, and a filament was affixed to the midrib of the third leaf from the base, which, with the petiole, was 5 inches in length. The leaf stood up almost vertically, but the tip [page 229] was deflected, so that the filament projected almost horizontally, and its movements were traced during 48 h. on a vertical glass as shown in the accompanying figure (Fig. 95). We here plainly see that the leaf was continually circumnutating; but the proper periodicity of its movements was disturbed by its being only dimly illuminated from above through a double skylight. We infer that this was the case, because two leaves on plants growing out of doors, had their angles above the horizon measured in the middle of the day and at 9 to about 10 P.M. on successive nights, and they were found at this latter hour to have risen by an average angle of 9o above their mid-day position: on the following morning they fell to their former position. Now it may be observed in the diagram that the leaf rose during the second night, so that it stood at 6.40 A.M. higher than at 10.20 P.M. on the preceding night; and this may be attributed to the leaf adjusting itself to the dim light, coming exclusively from above.
 
Fig. 95. Crambe maritima: circumnutation of leaf, disturbed by being insufficiently84 illuminated from above, traced from 7.50 A.M. June 23rd to 8 A.M. 25th. Apex of leaf 15 1/4 inches from the vertical glass, so that the tracing was much magnified, but is here reduced to one-fourth of original scale.
 
(4.) Brassica oleracea (Cruciferae).—Hofmeister and Batalin* state that the leaves of the cabbage rise at night, and fall by day. We covered a young plant, bearing 8 leaves, under a large bell-glass, placing it in the same position with respect to the
 
* 'Flora85,' 1873, p. 437. [page 230]
 
light in which it had long remained, and a filament was fixed at the distance of .4 of an inch from the apex of a young leaf nearly 4 inches in length. Its movements were then traced during three days, but the tracing is not worth giving. The leaf fell during the whole morning, and rose in the evening and during the early part of the night. The ascending and descending86 lines did not coincide, so that an irregular ellipse was formed each 24 h. The basal part of the midrib did not move, as was ascertained by measuring at successive periods the angle which it formed with the horizon, so that the movement was confined to the terminal portion of the leaf, which moved through an angle of 11o in the course of 24 h., and the distance travelled by the apex, up and down, was between .8 and .9 of an inch.
 
In order to ascertain the effect of darkness, a filament was fixed to a leaf 5 ? inches in length, borne by a plant which after forming a head had produced a stem. The leaf was inclined 44o above the horizon, and its movements were traced on a vertical glass every hour by the aid of a taper87. During the first day the leaf rose from 8 A.M. to 10.40 P.M. in a slightly zigzag course, the actual distance travelled by the apex being .67 of an inch. During the night the leaf fell, whereas it ought to have risen; and by 7 A.M. on the following morning it had fallen .23 of an inch, and it continued falling until 9.40 A.M. It then rose until 10.50 P.M., but the rise was interrupted by one considerable oscillation, that is, by a fall and re-ascent88. During the second night it again fell, but only to a very short distance, and on the following morning re-ascended to a very short distance. Thus the normal course of the leaf was greatly disturbed, or rather completely inverted89, by the absence of light; and the movements were likewise greatly diminished in amplitude.
 
We may add that, according to Mr. A. Stephen Wilson,* the young leaves of the Swedish turnip90, which is a hybrid between B. oleracea and rapa, draw together in the evening so much "that the horizontal breadth diminishes about 30 per cent. of the daylight breadth." Therefore the leaves must rise considerably at night.
 
(5.) Dianthus caryophyllus (Caryophylleae, Fam. 26).—The
 
* 'Trans. Bot. Soc. Edinburgh,' vol. xiii. p. 32. With respect to the origin of the Swedish turnip, see Darwin, 'Animals and Plants under Domestication,' 2nd edit. vol. i. p. 344. [page 231]
 
terminal shoot of a young plant, growing very vigorously, was selected for observation. The young leaves at first stand up vertically and close together, but they soon bend outwards91 and downwards, so as to become horizontal, and often at the same time a little to one side. A filament was fixed to the tip of a young leaf whilst still highly inclined, and the first dot was made on the vertical glass at 8.30 A.M. June 13th, but it curved downwards so quickly that by 6.40 A.M. on the following morning it stood only a little above the horizon. In Fig. 96
 
Fig. 96. Dianthus caryophyllus: circumnutation of young leaf, traced from 10.15 P.M. June 13th to 10.35 P.M. 16th. Apex of leaf stood, at the close of our observations, 8 3/4 inches from the vertical glass, so tracing not greatly magnified. The leaf was 5 1/4 inches long. Temp. 15 1/2o - 17 1/2o C.
 
the long, slightly zigzag line representing this rapid downward course, which was somewhat inclined to the left, is not given; but the figure shows the highly tortuous92 and zigzag course, together with some loops, pursued during the next 2 ? days. As the leaf continued to move all the time to the left, it is evident that the zigzag line represents many circumnutations.
 
(6.) Camellia Japonica (Camelliaceae, Fam. 32).—A youngish leaf, which together with its petiole was 2 3/4 inches in length and which arose from a side branch on a tall bush, had a filament attached to its apex. This leaf sloped downwards at an angle of 40o beneath the horizon. As it was thick and rigid, and its [page 232] petiole very short, much movement could not be expected. Nevertheless, the apex changed its course completely seven times in the course of 11 ? h., but moved to only a very small distance. On the next day the movement of the apex was traced during 26 h. 20 m. (as shown in Fig. 97), and was nearly of the same nature, but rather less complex. The movement seems to be periodical, for on both days the leaf circumnutated in the forenoon, fell in the afternoon (on the first day until between 3 and 4 P.M., and on the second day until 6 P.M.), and then rose, falling again during the night or early morning.
 
Fig. 97. Camellia Japonica: circumnutation of leaf, traced from 6.40 A.M. June 14th to 6.50 A.M. 15th. Apex of leaf 12 inches from the vertical glass, so figure considerably magnified. Temp. 16o - 16 1/2o C.
 
In the chapter on the Sleep of Plants we shall see that the leaves in several Malvaceous genera sink
 
Fig. 98. Pelargonium zonale: circumnutation and downward movement of young leaf, traced from 9.30 A.M. June 14th to 6.30 P.M. 16th. Apex of leaf 9 1.4 inches from the vertical glass, so figure moderately magnified. Temp. 15o - 16 1/2o C.
 
at night; and as they often do not then occupy a vertical position, especially if they have not been well illuminated during [page 233] the day, it is doubtful whether some of these cases ought not to have been included in the present chapter.
 
(7.) Pelargonium zonale (Geraniaceae, Fam. 47).—A young leaf, 1 1/4 inch in breadth, with its petiole 1 inch long, borne on a young plant, was observed in the usual manner during 61 h.; and its course is shown in the preceding figure (Fig. 98). During the first day and night the leaf moved downwards, but circumnutated between 10 A.M. and 4.30 P.M. On the second day it sank and rose again, but between 10 A.M. and 6 P.M. it circumnutated on an extremely small scale. On the third day the circumnutation was more plainly marked.
 
(8.) Cissus discolor (Ampelideae, Fam. 67).—A leaf, not nearly full-grown, the third from the apex of a shoot on a cut-down plant, was observed during 31 h. 30 m. (see Fig. 99). The day was cold (15o - 16o C.), and if the plant had been observed in the hot-house, the circumnutation, though plain enough as it was, would probably have been far more conspicuous.
 
Fig. 99. Cissus discolor: circumnutation of leaf, traced from 10.35 A.M. May 28th to 6 P.M. 29th. Apex of leaf 8 3/4 inches from the vertical glass.
 
(9.) Vicia faba (Leguminosae, Fam. 75).—A young leaf, 3.1 inches in length, measured from base of petiole to end of leaflets, had a filament affixed to the midrib of one of the two terminal leaflets, and its movements were traced during 51 ? h. The filament fell all morning (July 2nd) till 3 P.M., and then rose greatly till 10.35 P.M.; but the rise this day was so great, compared with that which subsequently occurred, that it was probably due in part to the plant being illuminated from above. The latter part of the course on July 2nd is alone given in the following figure (Fig. 100). On the next day (July 3rd) the leaf again fell in the morning, then circumnutated in a conspicuous manner, and rose till late at night; but the movement was not traced after 7.15 P.M., as by that time the filament pointed93 towards the upper edge of the glass. During the latter part of the night or early morning it again fell in the same manner as before. [page 234]
 
As the evening rise and the early morning fall were unusually large, the angle of the petiole above the horizon was measured at the two periods, and the leaf was found to have risen 19o
 
Fig. 100. Vicia faba: circumnutation of leaf, traced from 7.15 P.M. July 2nd to 10.15 A.M. 4th. Apex of the two terminal leaflets 7 1/4 inches from the vertical glass. Figure here reduced to two-thirds of original scale. Temp. 17o - 18o C.
 
between 12.20 P.M. and 10.45 P.M., and to have fallen 23o 30 seconds between the latter hour and 10.20 A.M. on the following morning.
 
The main petiole was now secured to a stick close to the base [page 235] of the two terminal leaflets, which were 1.4 inch in length; and the movements of one of them were traced during 48 h. (see Fig. 101). The course pursued is closely analogous94 to that of the whole leaf. The zigzag line between 8.30 A.M. and 3.30 P.M. on the second day represents 5 very small ellipses, with their Fig 101. Vicia faba: circumnutation of one of the two terminal leaflets, the main petiole having been secured, traced from 10.40 A.M. July 4th to 10.30 A.M. 6th. Apex of leaflet 6 5/8 inches from the vertical glass. Tracing here reduced to one-half of original scale. Temp. 16o - 18o C.
 
longer axes differently directed. From these observations it follows that both the whole leaf and the terminal leaflets undergo a well-marked daily periodical movement, rising in the evening and falling during the latter part of the night or early morning; whilst in the middle of the day they generally circumnutate round the same small space. [page 236]
 
(10.) Acacia retinoides (Leguminosae).—The movement of a young phyllode, 2 3/8 inches in length, and inclined at a considerable angle above the horizon, was traced during 45 h. 30 m.; but in the figure here given (Fig. 102), its circumnutation is shown during only 21 h. 30 m. During part of this time (viz., 14 h. 30 m.) the phyllode described a figure representing 5 or 6 small ellipses. The actual amount of movement in a vertical direction was .3 inch. The phyllode rose considerably between 1.30 P.M. and 4 P.M., but there was no evidence on either day of a regular periodic movement.
 
Fig. 102. Acacia retinoides: circumnutation of a young phyllode, traced from 10.45 A.M. July 18th to 8.15 A.M. 19th. Apex of phyllode 9 inches from the vertical glass; temp. 16 1/2o - 17 1/2o C.
 
(11.) Lupinus speciosus (Leguminosae).—Plants were raised from seed purchased under this name. This is one of the species in this large genus, the leaves of which do not sleep at night. The petioles rise direct from the ground, and are from 5 to 7 inches in length. A filament was fixed to the midrib of one of the longer leaflets, and the movement of the whole leaf was traced, as shown in Fig. 103. In the course of 6 h. 30 m. the filament went four times up and three times down. A new tracing was then begun (not here given), and during 12 ? h. the leaf moved eight times up and seven times down; so that it described 7 ? ellipses in this time, and this is an extraordinary rate of movement. The summit of the petiole was then secured to a stick, and the separate leaflets were found to be continually circumnutating.
 
Fig. 103. Lupinus speciosus: circumnutation of leaf, traced on vertical glass, from 10.15 A.M. to 5.45 P.M.; i.e., during 6 h. 30 m. [page 237]
 
(12.) Echeveria stolonifera (Crassulaceae, Fam. 84).—The older leaves of this plant are so thick and fleshy, and the young ones so short and broad, that it seemed very improbable that any circumnutation could be detected. A filament was fixed to a young upwardly inclined leaf, .75 inch in length and .28 in breadth, which stood on the outside of a terminal rosette of leaves, produced by a plant growing very vigorously. Its movement was traced during 3 days, as here shown (Fig. 104). The course was chiefly in an upward direction, and this may be attributed to the elongation of the leaf through growth; but we see that the lines are strongly zigzag, and that occasionally there was distinct circumnutation, though on a very small scale.
 
Fig. 104. Echeveria stolonifera: circumnutation of leaf, traced from 8.20
A.M. June 25th to 8.45 A.M. 28th. Apex of leaf 12 1/4 inches from the
glass, so that the movement was much magnified; temp. 23o - 24 1/2o C.
(13.) Bryophyllum (vel Calanchae) calycinum (Crassulaceae).—Duval-Jouve
('Bull. Soc. Bot. de France,' Feb. 14th, 1868) measured the distance
between the tips of the upper pair of leaves on this plant, with the result
shown in the following Table. It should be noted that the measurements on
Dec. 2nd were made on a different pair of leaves: —
 
               8 A.M.      2 P.M.      7 P.M.
Nov. 16. . . . . . . . . . . . . . . . . . .15 mm.. . . . . .25 mm. . . ..
. . .(?)
  "     19. . . . . . . . . . . . . . . . . . .48  " . . . . . . .  60 ". .
. . . . .  48 mm.
Dec.   2. . . . . . . . . . . . . . . . . . .22  ". . . . . . . . 43 ". . .
. . . . .28  "
We see from this Table that the leaves stood considerably further apart at 2 P.M. than at either 8 A.M. or 7 P.M.; and this shows that they rise a little in the evening and fall or open in the forenoon.
 
(14.) Drosera rotundifolia (Droseraceae, Fam. 85).—The movements of a young leaf, having a long petiole but with its tentacles96 (or gland97-bearing hairs) as yet unfolded, were traced during 47 h. 15 m. The figure (Fig. 105) shows that it circumnutated largely, chiefly in a vertical direction, making two ellipses each [page 238] day. On both days the leaf began to descend62 after 12 or 1 o'clock, and continued to do so all night, though to a very unequal distance on the two occasions. We therefore thought that the movement was periodic; but on observing three other leaves during several successive days and nights, we found this to be an error; and the case is given merely as a caution. On the third morning the above leaf occupied almost exactly the same position as on the first morning; and the tentacles by this time had unfolded sufficiently to project at right angles to the blade or disc.
 
Fig. 105. Drosera rotundifolia: circumnutation of young leaf, with filament fixed to back of blade, traced from 9.15 A.M. June 7th to 8.30 A.M. June 9th. Figure here reduced to one-half original scale.
 
The leaves as they grow older generally sink more and more downwards. The movement of an oldish leaf, the glands98 of which were still secreting99 freely, was traced for 24 h., during which time it continued to sink a little in a slightly zigzag line. On the following morning, at 7 A.M., a drop of a solution of carbonate of ammonia (2 gr. to 1 oz. of water) was placed on the disc, and this blackened the glands and induced inflection of many of the tentacles. The weight of the drop caused the leaf at first to sink a little; but immediately afterwards it began to rise in a somewhat zigzag course, and continued to do so till 3 P.M. It then circumnutated about the same spot on a very small scale for 21 h.; and during the next 21 h. it sank in a zigzag line to nearly the same level which it had held when the ammonia was first administered. By this time the tentacles had re-expanded, and the glands had recovered their proper colour. We thus learn that an old leaf [page 239] circumnutates on a small scale, at least whilst absorbing carbonate of ammonia; for it is probable that this absorption may stimulate100 growth and thus re-excite circumnutation. Whether the rising of the glass filament which was attached to the back of the leaf, resulted from its margin101 becoming slightly inflected (as generally occurs), or from the rising of the petiole, was not ascertained.
 
In order to learn whether the tentacles or gland-bearing hairs circumnutate, the back of a young leaf, with the innermost tentacles as yet incurved, was firmly cemented with shellac to a flat stick driven into compact damp argillaceous sand. The plant was placed under a microscope with the stage removed and with an eye-piece micrometer, of which each division equalled 1/500 of an inch. It should be stated that as the leaves grow older the tentacles of the exterior72 rows bend outwards and downwards, so as ultimately to become deflected considerably beneath the horizon. A tentacle95 in the second row from the margin was selected for observation, and was found to be moving outwards at a rate of 1/500 of an inch in 20 m., or 1/100 of inch in 1 h. 40 m.; but as it likewise moved from side to side to an extent of above 1/500 of inch, the movement was probably one of modified circumnutation. A tentacle on an old leaf was next observed in the same manner. In 15 m. after being placed under the microscope it had moved about 1/1000 of an inch. During the next 7 ? h. it was looked at repeatedly, and during this whole time it moved only another 1/1000 of an inch; and this small movement may have been due to the settling of the damp sand (on which the plant rested), though the sand had been firmly pressed down. We may therefore conclude that the tentacles when old do not circumnutate; yet this tentacle was so sensitive, that in 23 seconds after its gland had been merely touched with a bit of raw meat, it began to curl inwards. This fact is of some importance, as it apparently shows that the inflection of the tentacles from the stimulus102 of absorbed animal matter (and no doubt from that of contact with any object) is not due to modified circumnutation.
 
(15.) Dionoea muscipula (Droseraceae).—It should be premised that the leaves at an early stage of their development have the two lobes103 pressed closely together. These are at first directed back towards the centre of the plant; but they gradually rise up and soon stand at right angles to the petiole, and ultimately in nearly a straight line with it. A young leaf, which with the [page 240] petiole was only 1.2 inch in length, had a filament fixed externally along the midrib of the still closed lobes, which projected at right angles to the petiole. In the evening this leaf completed an ellipse in the course of 2 h. On the following day (Sept. 25th) its movements were traced during 22 h.; and we see in Fig. 106 that it moved in the same general direction, due to the straightening of the leaf, but in an extremely zigzag line. This line represents several drawn104-out or modified ellipses. There can therefore be no doubt that this young leaf circumnutated.
 
Fig. 106. Dionaea muscipula: circumnutation of a young and expanding leaf, traced on a horizontal glass in darkness, from noon Sept. 24th to 10 A.M. 25th. Apex of leaf 13 ? inches from the glass, so tracing considerably magnified.
 
A rather old, horizontally extended leaf, with a filament attached along the under side of the midrib, was next observed during 7 h. It hardly moved, but when one of its sensitive hairs was touched, the blades closed, though not very quickly. A new dot was now made on the glass, but in the course of 14 h. 20 m. there was hardly any change in the position of the filament. We may therefore infer that an old and only moderately sensitive leaf does not circumnutate plainly; but we shall soon see that it by no means follows that such a leaf is absolutely motionless. We may further infer that the stimulus from a touch does not re-excite plain circumnutation.
 
Another full-grown leaf had a filament attached externally along one side of the midrib and parallel to it, so that the filament would move if the lobes closed. It should be first stated that, although a touch on one of the sensitive hairs of a vigorous leaf causes it to close quickly, often almost instantly, yet when a bit of damp meat or some solution of carbonate of ammonia is placed on the lobes, they close so slowly that generally 24 h. is required for the completion of the act. The above leaf was first observed for 2 h. 30 m., and did not circumnutate, but it ought to have been observed for a [page 241] longer period; although, as we have seen, a young leaf completed a fairly large ellipse in 2 h. A drop of an infusion105 of raw meat was then placed on the leaf, and within 2 h. the glass filament rose a little; and this implies that the lobes had begun to close, and perhaps the petiole to rise. It continued to rise with extreme slowness for the next 8 h. 30 m. The position of the pot was then (7.15 P.M., Sept. 24th) slightly changed and an additional drop of the infusion given, and a new tracing was begun (Fig. 107). By 10.50 P.M. the filament had risen only a little more, and it fell during the night. On the following morning the lobes were closing more quickly, and by 5 P.M. it was evident to the eye that they had closed considerably; by 8.48. P.M. this was still plainer, and by 10.45 P.M. the marginal spikes106 were interlocked. The leaf fell a little during the night, and next morning (25th) at 7 A.M. the lobes were completely shut. The course pursued, as may be seen in the figure, was
 
Fig. 107. Dionoea muscipula: closure of the lobes and circumnutation of a full-grown leaf, whilst absorbing an infusion of raw meat, traced in darkness, from 7.15 P.M. Sept. 24th to 9 A.M. 26th. Apex of leaf 8 ? inches from the vertical glass. Figure here reduced to two-thirds of original scale.
 
strongly zigzag, and this indicates that the closing of the lobes was combined with the circumnutation of the whole leaf; and there cannot be much doubt, considering how motionless the leaf was during 2 h. 30 m. before it received the infusion, that the absorption of the animal matter had excited it to circumnutate. The leaf was occasionally observed for the next four days, but was kept in rather too cool a place; nevertheless, it continued to circumnutate to a small extent, and the lobes remained closed.
 
It is sometimes stated in botanical works that the lobes close or sleep at night; but this is an error. To test the statement, very long glass filaments108 were fixed inside the two lobes of three leaves, and the distances between their tips were measured in the middle of the day and at night; but no difference could be detected.
 
The previous observations relate to the movements of the whole leaf, but the lobes move independently of the petiole, and [page 242] seem to be continually opening and shutting to a very small extent. A nearly full-grown leaf (afterwards proved to be highly sensitive to contact) stood almost horizontally, so that by driving a long thin pin through the foliaceous petiole close to the blade, it was rendered motionless. The plant, with a little triangle of paper attached to one of the marginal spikes, was placed under a microscope with an eye-piece micrometer, each division of which equalled 1/500 of an inch. The apex of the paper-triangle was now seen to be in constant slight movement; for in 4 h. it crossed nine divisions, or 9/500 of an inch, and after ten additional hours it moved back and had crossed 5/500 in an opposite direction. The plant was kept in rather too cool a place, and on the following day it moved rather less, namely, 1/500 in 3 h., and 2/500 in an opposite direction during the next 6 h. The two lobes, therefore, seem to be constantly closing or opening, though to a very small distance; for we must remember that the little triangle of paper affixed to the marginal spike107 increased its length, and thus exaggerated somewhat the movement. Similar observations, with the important difference that the petiole was left free and the plant kept under a high temperature, were made on a leaf, which was healthy, but so old that it did not close when its sensitive hairs were repeatedly touched, though judging from other cases it would have slowly closed if it had been stimulated109 by animal matter. The apex of the triangle was in almost, though not quite, constant movement, sometimes in one direction and sometimes in an opposite one; and it thrice crossed five divisions of the micrometer (i.e. 1/100 of an inch) in 30 m. This movement on so small a scale is hardly comparable with ordinary circumnutation; but it may perhaps be compared with the zigzag lines and little loops, by which the larger ellipses made by other plants are often interrupted.
 
In the first chapter of this volume, the remarkable oscillatory movements of the circumnutating hypocotyl of the cabbage have been described. The leaves of Dionaea present the same phenomenon, which is a wonderful one, as viewed under a low power (2-inch object-glass), with an eye-piece micrometer of which each division (1/500 of an inch) appeared as a rather wide space. The young unexpanded leaf, of which the circumnutating movements were traced (Fig. 106), had a glass filament fixed perpendicularly110 to it; and the movement of the apex was observed in the hot-house (temp. 84o to 86o F.), with light admitted only from above, and with any lateral currents of air [page 243] excluded. The apex sometimes crossed one or two divisions of the micrometer at an imperceptibly slow rate, but generally it moved onwards by rapid starts or jerks of 2/1000 or 3/1000, and in one instance of 4/1000 of an inch. After each jerk forwards, the apex drew itself backwards111 with comparative slowness for part of the distance which had just been gained; and then after a very short time made another jerk forwards. Four conspicuous jerks forwards, with slower retreats, were seen on one occasion to occur in exactly one minute, besides some minor112 oscillations. As far as we could judge, the advancing and retreating lines did not coincide, and if so, extremely minute ellipses were each time described. Sometimes the apex remained quite motionless for a short period. Its general course during the several hours of observation was in two opposite directions, so that the leaf was probably circumnutating.
 
An older leaf with the lobes fully expanded, and which was afterwards proved to be highly sensitive to contact, was next observed in a similar manner, except that the plant was exposed to a lower temperature in a room. The apex oscillated forwards and backwards in the same manner as before; but the jerks forward were less in extent, viz. about 1/1000 inch; and there were longer motionless periods. As it appeared possible that the movements might be due to currents of air, a wax taper was held close to the leaf during one of the motionless periods, but no oscillations were thus caused. After 10 m., however, vigorous oscillations commenced, perhaps owing to the plant having been warmed and thus stimulated. The candle was then removed and before long the oscillations ceased; nevertheless, when looked at again after an interval of 1 h. 30 m., it was again oscillating. The plant was taken back into the hot-house, and on the following morning was seen to be oscillating, though not very vigorously. Another old but healthy leaf, which was not in the least sensitive to a touch, was likewise observed during two days in the hot-house, and the attached filament made many little jerks forwards of about 2/1000 or only 1/1000 of an inch.
 
Finally, to ascertain whether the lobes independently of the petiole oscillated, the petiole of an old leaf was cemented close to the blade with shellac to the top of a little stick driven into the soil. But before this was done the leaf was observed, and found to be vigorously oscillating or jerking; and after it had been cemented to the stick, the oscillations of about 2/1000 of an inch still continued. On the following day a little infusion [page 244] of raw meat was placed on the leaf, which caused the lobes to close together very slowly in the course of two days; and the oscillations continued during this whole time and for the next two days. After nine additional days the leaf began to open and the margins113 were a little everted, and now the apex of the glass filament remained for long periods motionless, and then moved backwards and forwards for a distance of about 1/1000 of an inch slowly, without any jerks. Nevertheless, after warming the leaf with a taper held close to it, the jerking movement recommenced.
 
This same leaf had been observed 2 ? months previously, and was then found to be oscillating or jerking. We may therefore infer that this kind of movement goes on night and day for a very long period; and it is common to young unexpanded leaves and to leaves so old as to have lost their sensitiveness to a touch, but which were still capable of absorbing nitrogenous matter. The phenomenon when well displayed, as in the young leaf just described, is a very interesting one. It often brought before our minds the idea of effort, or of a small animal struggling to escape from some constraint114.
 
(16.) Eucalyptus115 resinifera (Myrtaceae, Fam. 94).—A young leaf, two inches in length together with the petiole, produced by a lateral shoot from a cut-down tree, was observed in the usual manner. The blade had not as yet assumed its vertical position. On June 7th only a few observations were made, and the tracing merely showed that the leaf had moved three times upwards and three downwards. On the following day it was observed more frequently; and two tracings were made (see A and B, Fig. 108), as a single one would have been too complicated. The apex changed its course 13 times in the course of 16 h., chiefly up and down, but with some lateral movement. The actual amount of movement in any one direction was small.
 
Fig. 108. Eucalyptus resinifera: circumnutation of a leaf, traced, A, from 6.40 A.M. to 1 P.M. June 8th; B, from 1 P.M. 8th to 8.30 A.M. 9th. Apex of leaf 14 ? inches from the horizontal glass, so figures considerably magnified.
 
(17.) Dahlia (garden var.) (Compositae, Fam. 122).—A fine young [page 245] leaf 5 3/4 inches in length, produced by a young plant 2 feet high, growing vigorously in a large pot, was directed at an angle of about 45o beneath the horizon. On June 18th the leaf descended from 10 A.M. till 11.35 A.M. (see Fig. 109); it then ascended greatly till 6 P.M., this ascent being probably due to the light
 
Fig. 109. Dahlia: circumnutation of leaf, traced from 10 A.M. June 18th to 8.10 A.M. 20th, but with a break of 1 h. 40 m. on the morning of the 19th, as, owing to the glass filament pointing too much to one side, the pot had to be slightly moved; therefore the relative position of the two tracings is somewhat arbitrary. The figure here given is reduced to one-fifth of the original scale. Apex of leaf 9 inches from the glass in the line of its inclination116, and 4 3/4 in a horizontal line. coming only from above. It zigzagged between 6 P.M. and 10.35 P.M., and ascended a little during the night. It should be remarked that the vertical distances in the lower part of the diagram are much exaggerated, as the leaf was at first deflected beneath the horizon, and after it had sunk downwards, the filament pointed in a very oblique line towards the glass. Next [page 246] day the leaf descended from 8.20 A.M. till 7.15 P.M., then zigzagged and ascended greatly during the night. On the morning of the 20th the leaf was probably beginning to descend, though the short line in the diagram is horizontal. The actual distances travelled by the apex of the leaf were considerable, but could not be calculated with safety. From the course pursued on the second day, when the plant had accommodated itself to the light from above, there cannot be much doubt that the leaves undergo a daily periodic movement, sinking during the day and rising at night.
 
(18.) Mutisia clematis (Compositae).—The leaves terminate in tendrils and circumnutate like those of other tendril-bearers; but this plant is here mentioned, on account of an erroneous statement* which has been published, namely, that the leaves sink at night and rise during the day. The leaves which behaved in this manner had been kept for some days in a northern room and had not been sufficiently illuminated. A plant therefore was left undisturbed in the hot-house, and three leaves had their angles measured at noon and at 10 P.M. All three were inclined a little beneath the horizon at noon, but one stood at night 2o, the second 21o, and the third 10o higher than in the middle of the day; so that instead of sinking they rise a little at night.
 
(19.) Cyclamen Persicum (Primulaceae, Fam. 135).—A young leaf, 1.8 of an inch in length, petiole included, produced by an old root-stock, was observed during three days in the usual manner (Fig. 110). On the first day the leaf fell more than afterwards, apparently from adjusting itself to the light from above. On all three days it fell from the early morning to about 7 P.M., and from that hour rose during the night, the course being slightly zigzag. The movement therefore is strictly117 periodic. It should be noted that the leaf would have sunk each evening a little lower down than it did, had not the glass filament rested between 5 and 6 P.M. on the rim74 of the pot. The amount of movement was considerable; for if we assume that the whole leaf to the base of the petiole became bent, the tracing would be magnified rather less than five times, and this would give to the apex a rise and fall of half an inch, with some lateral movement. This amount, however, would not attract attention without the aid of a tracing or measurement of some kind.
 
* 'The Movements and Habits of Climbing Plants,' 1875, p. 118.
[page 247]
 
 (20.) Allamanda Schottii (Apocyneae, Fam. 144).—The young leaves of this
shrub118 are elongated, with the blade bowed so much
Fig. 110. Cyclamen Persicum: circumnutation of leaf, traced from 6.45 A.M. June 2nd to 6.40 A.M. 5th. Apex of leaf 7 inches from the vertical glass.
 
downwards as almost to form a semicircle. The chord—that is, a line drawn from the apex of the blade to the base of the petiole—of a young leaf, 4 3/4 inches in length, stood at 2.50 P.M. on [page 248] Dec. 5th at an angle of 13o beneath the horizon, but by 9.30 P.M. the blade had straightened itself so much, which implies the raising of the apex, that the chord now stood at 37o above the horizon, and had therefore risen 50o. On the next day similar angular measurements of the same leaf were made; and at noon the chord stood 36o beneath the horizon, and 9.30 P.M. 3 1/2o above it, so had risen 39 1/2o. The chief cause of the rising movement lies in the straightening of the blade, but the short petiole rises between 4o and 5o. On the third night the chord stood at 35o above the horizon, and if the leaf occupied the same position at noon, as on the previous day, it had risen 71o. With older leaves no such change of curvature could be detected. The plant was then brought into the house and kept in a north-east room, but at night there was no change in the curvature of the young leaves; so that previous exposure to a strong light is apparently requisite119 for the periodical change of curvature in the blade, and for the slight rising of the petiole.
 
(21.) Wigandia (Hydroleaceae, Fam. 149).—Professor Pfeffer informs us that the leaves of this plant rise in the evening; but as we do not know whether or not the rising is great, this species ought perhaps to be classed amongst sleeping plants.
 
Fig. 111. Petunia120 violacea: downward movement and circumnutation of a very young leaf, traced from 10 A.M. June 2nd to 9.20 A.M. June 6th. N.B.—At 6.40 A.M. on the 5th it was necessary to move the pot a little, and a new tracing was begun at the point where two dots are not joined in the diagram. Apex of leaf 7 inches from the vertical glass. Temp. generally 17 1/2o C. [page 249]
 
(22.) Petunia violacea (Solaneae, Fam. 157).—A very young leaf, only 3/4 inch in length, highly inclined upwards, was observed for four days. During the whole of this time it bent outwards and downwards, so as to become more and more nearly horizontal. The strongly marked zigzag line in the figure on p. 248 (Fig. 111), shows that this was effected by modified circumnutation; and during the latter part of the time there was much ordinary circumnutation on a small scale. The movement in the diagram is magnified between 10 and 11 times. It exhibits a clear trace of periodicity, as the leaf rose a little each evening; but this upward tendency appeared to be almost conquered by the leaf striving to become more and more horizontal as it grew older. The angles which two older leaves formed together, were measured in the evening and about noon on 3 successive days, and each night the angle decreased a little, though irregularly.
 
Fig. 112. Acanthus mollis: circumnutation of young leaf, traced from 9.20 A.M. June 14th to 8.30 A.M. 16th. Apex of leaf 11 inches from the vertical glass, so movement considerably magnified. Figure here reduced to one-half of original scale. Temp. 15o - 16 1/2o C.
 
(23.) Acanthus mollis (Acanthaceae, Fam. 168).—The younger of two leaves, 2 1/4 inches in length, petiole included, produced by a seedling plant, was observed during 47 h. Early on each of the three mornings, the apex of the leaf fell; and it continued to fall till 3 P.M., on the two afternoons when observed. After 3 P.M. it rose considerably, and continued to rise on the second night until the early morning. But on the first night it fell instead of rising, and we have little doubt that this was owing to the leaf being very young and becoming through epinastic growth more and more horizontal; for it may be seen in the diagram (Fig. 112), that the leaf stood on a higher level on the first than on the second day. The leaves of an allied121 species ('A. spinosus') certainly rose every night; and the rise between noon and 10.15 P.M., when measured on one occasion, was 10o. This rise was chiefly [page 250] or exclusively due to the straightening of the blade, and not to the movement of the petiole. We may therefore conclude that the leaves of Acanthus circumnutate periodically, falling in the morning and rising in the afternoon and night.
 
(24.) Cannabis sativa (Cannabineae, Fam. 195).—We have here the rare case of leaves moving downwards in the evening, but not to a sufficient degree to be called sleep.* In the early morning, or in the latter part of the night, they move upwards. For instance, all the young leaves near the summits of several stems stood almost horizontally at 8 A.M. May 29th and at 10.30 P.M. were considerably declined. On a subsequent day two leaves stood at 2 P.M. at 21o and 12o beneath the horizon, and at 10 P.M. at 38o beneath it. Two other leaves on a younger plant were horizontal at 2 P.M., and at 10 P.M. had sunk to 36o beneath the horizon. With respect to this downward movement of the leaves, Kraus believes that it is due to their epinastic growth. He adds, that the leaves are relaxed during the day, and tense at night, both in sunny and rainy weather.
 
(25.) Pinus pinaster (Coniferae, Fam. 223).—The leaves on the summits of the terminal shoots stand at first in a bundle almost upright, but they soon diverge and ultimately become almost horizontal. The movements of a young leaf, nearly one inch in length, on the summit of a seedling plant only 3 inches high, were traced from the early morning of June 2nd to the evening of the 7th. During these five days the leaf diverged122, and its apex descended at first in an almost straight line; but during the two latter days it zigzagged so much that it was evidently circumnutating. The same little plant, when grown to a height of 5 inches, was again observed during four days. A filament was fixed transversely to the apex of a leaf, one inch in length, and which had already diverged considerably from its originally upright position. It continued to diverge (see A, Fig. 113), and to descend from 11.45 A.M. July 31st to 6.40 A.M. Aug. 1st. On August 1st it circumnutated about the same small space, and again descended at night. Next morning the pot was moved nearly one inch to the right, and a new tracing was begun (B). From this time, viz., 7 A.M. August 2nd to 8.20 A.M. on the 4th,
 
* We were led to observe this plant by Dr. Carl Kraus' paper, 'Beitr?ge zur Kentniss der Bewegungen Wachsender Laubbl?tter,' Flora, 1879, p. 66. We regret that we cannot fully understand parts of this paper. [page 251]
 
the leaf manifestly circumnutated. It does not appear from the diagram that the leaves move periodically, for the descending course during the first two nights, was clearly due to epinastic
 
Fig. 113. Pinus pinaster: circumnutation of young leaf, traced from 11.45 A.M. July 31st to 8.20 A.M. Aug. 4th. At 7 A.M. Aug. 2nd the pot was moved an inch to one side, so that the tracing consists of two figures. Apex of leaf 14 ? inches from the vertical glass, so movements much magnified.
 
growth, and at the close of our observations the leaf was not nearly so horizontal as it would ultimately become.
 
Pinus austriaca.—Two leaves, 3 inches in length, but not [page 252] quite fully grown, produced by a lateral shoot, on a young tree 3 feet in height, were observed during 29 h. (July 31st), in the same manner as the leaves of the previous species. Both these leaves certainly circumnutated, making within the above period two, or two and a half, small, irregular ellipses.
 
(26.) Cycas pectinata (Cycadeae, Fam. 224).—A young leaf, 11 ? inches in length, of which the leaflets had only recently become uncurled, was observed during 47 h. 30 m. The main petiole was secured to a stick at the base of the two terminal leaflets. To one of the latter, 3 3/4 inches in length, a filament was fixed; the leaflet was much bowed downward, but as the terminal part was upturned, the filament projected almost horizontally. The leaflet moved (see Fig. 114) largely and periodically, for it fell until about 7 P.M. and rose during the night, falling again next morning after 6.40 A.M. The descending lines are in a marked manner zigzag, and so probably would have been the ascending lines, if they had been traced throughout the night.
 
Fig. 114. Cycas pectinata: circumnutation of one of the terminal leaflets, traced from 8.30 A.M. June 22nd to 8 A.M. June 24th. Apex of leaflet 7 3/4 inches from the vertical glass, so tracing not greatly magnified, and here reduced to one-third of original scale; temp. 19o - 21o C.
 
CIRCUMNUTATION OF LEAVES: MONOCOTYLEDONS.
 
(27.) Canna Warscewiczii (Cannaceae, Fam. 2).—The movements of a young leaf, 8 inches in length and 3 ? in breadth, produced by a vigorous young plant, were observed during 45 h. 50 m., as shown in Fig. 115. The pot was slided about an inch to the right on the morning of the 11th, as a single figure would have been too complicated; but the two figures are continuous in time. The movement is periodical, as the leaf descended from the early morning until about 5 P.M., and ascended during the rest of the evening and [page 253] part of the night. On the evening of the 11th it circumnutated on a small scale for some time about the same spot.
 
Fig. 115. Canna Warscewiczii: circumnutation of leaf, traced (A) from 11.30 A.M. June 10th to 6.40 A.M. 11th; and (B) from 6.40 A.M. 11th to 8.40 A.M. 12th. Apex of leaf 9 inches from the vertical glass.
 
(28.) Iris123 pseudo-acorus (Irideae, Fam. 10).—The movements of a young leaf, rising 13 inches above the water in which the plant grew, were traced as shown in the figure (Fig. 116), during 27 h. 30 m. It manifestly circumnutated, though only to a small extent. On the second morning, between 6.40 A.M. and 2 P.M. (at which latter hour the figure here given ends), the apex changed its course five times. During the next 8 h. 40 m. it zigzagged much, and descended as far as the lowest dot in the figure, making in its course two very small ellipses; but if these lines had been added to the diagram it would have been too complex.
 
Fig. 116. Iris pseudo-acorus: circumnutation of leaf, traced from 10.30 A.M. May 28th to 2 P.M. 29th. Tracing continued to 11 P.M., but not here copied. Apex of leaf 12 inches beneath the horizontal glass, so figure considerably magnified. Temp. 15o - 16o C. (29.) Crinum Capense (Amaryllideae, Fam. 11).—The leaves of this plant are remarkable for their great length and narrowness: one was measured and found to be 53 inches long and only 1.4 broad at the base. Whilst quite young they stand up almost vertically to the height of about a foot; afterwards [page 254] their tips begin to bend over, and subsequently hang vertically down, and thus continue to grow. A rather young leaf was selected, of which the dependent tapering124 point was as yet only 5 ? inches in length, the upright basal part being 20 inches high, though this part would ultimately become shorter by being more bent over. A large bell-glass was placed over the plant, with a black dot on one side; and by bringing the dependent apex of the leaf into a line with this dot, the accompanying figure (Fig. 117) was traced on the other side of the bell, during 2 ? days. During the first day (22nd) the tip travelled laterally125 far to the left, perhaps in consequence of the plant having been
 
Fig. 117. Crinum Capense: circumnutation of dependent tip of young leaf, traced on a bell-glass, from 10.30 P.M. May 22nd to 10.15 A.M. 25th. Figure not greatly magnified.
 
disturbed; and the last dot made at 10.30 P.M. on this day is alone here given. As we see in the figure, there can be no doubt that the apex of this leaf circumnutated.
 
A glass filament with little triangles of paper was at the same time fixed obliquely126 across the tip of a still younger leaf, which stood vertically up and was as yet straight. Its movements were traced from 3 P.M. May 22nd to 10.15 A.M. 25th. The leaf was growing rapidly, so that the apex ascended greatly during this period; as it zigzagged much it was clearly circumnutating, and it apparently tended to form one ellipse each day. The lines traced during the night were much more vertical than those traced during the day; and this indicates that the tracing would have exhibited a nocturnal rise and a diurnal127 fall, if the leaf had not grown so quickly. The movement of this same leaf after an interval of six days (May 31st), by which time the tip had curved outwards into a horizontal position, [page 255] and had thus made the first step towards becoming dependent, was traced orthogonically by the aid of a cube of wood (in the manner before explained); and it was thus ascertained that the actual distance travelled by the apex, and due to circumnutation, was 3 1/8 inches in the course of 20 ? h. During the next 24 h. it travelled 2 ? inches. The circumnutating movement, therefore, of this young leaf was strongly marked.
 
(30.) Pancratium littorale (Amaryllideae).—The movements, much magnified, of a leaf, 9 inches in length and inclined at about 45o above the horizon, were traced during two days. On the first day it changed its course completely, upwards and downwards and laterally, 9 times in 12 h.; and the figure traced apparently represented five ellipses. On the second day it was observed seldomer, and was therefore not seen to change its course so often, viz., only 6 times, but in the same complex manner as before. The movements were small in extent, but there could be no doubt about the circumnutation of the leaf.
 
(31.) Imatophyllum vel Clivia (sp.?) (Amaryllideae).—A long glass filament was fixed to a leaf, and the angle formed by it with the horizon was measured occasionally during three successive days. It fell each morning until between 3 and 4 P.M., and rose at night. The smallest angle at any time above the horizon was 48o, and the largest 50o; so that it rose only 2o at night; but as this was observed each day, and as similar observations were nightly made on another leaf on a distinct plant, there can be no doubt that the leaves move periodically, though to a very small extent. The position of the apex when it stood highest was .8 of an inch above its lowest point.
 
(32.) Pistia stratiotes (Aroideae, Fam. 30).—Hofmeister remarks that the leaves of this floating water-plant are more highly inclined at night than by day.* We therefore fastened a fine glass filament to the midrib of a moderately young leaf, and on Sept. 19th measured the angle which it formed with the horizon 14 times between 9 A.M. and 11.50 P.M. The temperature of the hot-house varied128 during the two days of observation between 18 1/2o and 23 1/2o C. At 9 A.M. the filament stood at 32o above the horizon; at 3.34 P.M. at 10o and at 11.50 P.M. at 55o; these two latter angles being the highest and the lowest observed during the day, showing a difference of 45o. The rising did not become strongly marked until between
 
* 'Die Lehre von der Pflanzenzelle,' 1867, p. 327. [page 256]
 
5 and 6 P.M. On the next day the leaf stood at only 10o above the horizon at 8.25 A.M., and it remained at about 15o till past 3 P.M.; at 5.40 P.M. it was 23o, and at 9.30 P.M. 58o; so that the rise was more sudden this evening than on the previous one, and the difference in the angle amounted to 48o. The movement is obviously periodical, and as the leaf stood on the first night at 55o, and on the second night at 58o above the horizon, it appeared very steeply inclined. This case, as we shall see in a future chapter, ought perhaps to have been included under the head of sleeping plants.
 
(33.) Pontederia (sp.?) (from the highlands of St. Catharina,
 
Fig. 118. Pontederia (sp.?): circumnutation of leaf, traced from 4.50 P.M. July 2nd to 10.15 A.M. 4th. Apex of leaf 16 ? inches from the vertical glass, so tracing greatly magnified. Temp. about 17o C., and therefore rather too low.
 
Brazil) (Pontederiaceae, Fam. 46).—A filament was fixed across the apex of a moderately young leaf, 7 ? inches in height, and its movements were traced during 42 ? h. (see Fig. 118). On the first evening, when the tracing was begun, and during the night, the leaf descended considerably. On the next morning it ascended in a strongly marked zigzag line, and descended again in the evening and during the night. The movement, therefore, seems to be periodic, but some doubt is thrown on this conclusion, because another leaf, 8 inches in height, appearing older and standing more highly inclined, behaved differently. During the first 12 h. it circumnutated over a [page 257] small space, but during the night and the whole following day it ascended in the same general direction; the ascent being effected by repeated up and down well-pronounced oscillations.
 
CRYPTOGAMS.
 
(34.) Nephrodium molle (Filices, Fam. 1).—A filament was fixed near the apex of a young frond129 of this Fern, 17 inches in height, which was not as yet fully uncurled; and its movements were traced during 24 h. We see in Fig. 119 that it
 
Fig. 119. Nephrodium molle: circumnutation of rachis, traced from 9.15 A.M. May 28th to 9 A.M. 29th. Figure here given two-thirds of original scale.
 
plainly circumnutated. The movement was not greatly magnified as the frond was placed near to the vertical glass, and would probably have been greater and more rapid had the day been warmer. For the plant was brought out of a warm greenhouse and observed under a skylight, where the temperature was between 15o and 16o C. We have seen in Chap. I. that a frond of this Fern, as yet only slightly lobed130 and with a rachis only .23 inch in height, plainly circumnutated.*
 
* Mr. Loomis and Prof. Asa Gray have described ('Botanical Gazette,' 1880, pp. 27, 43), an extremely curious case of movement in the fronds131, but only in the fruiting fronds, of Asplenium trichomanes. They move almost as rapidly as the little leaflets of Desmodium gyrans, alternately backwards and forwards through from 20 to 40 degrees, in a plane at right angles to that of the frond. The apex of the frond describes "a long and very narrow ellipse," so that it circumnutates. But the movement differs from ordinary [[page 258]] circumnutation as it occurs only when the plant is exposed to the light; even artificial light "is sufficient to excite motion for a few minutes." [page 258]
 
In the chapter on the Sleep of Plants the conspicuous circumnutation of Marsilea quadrifoliata (Marsileaceae, Fam. 4) will be described.
 
It has also been shown in Chap. I. that a very young Selaginella (Lycopodiaceae, Fam. 6), only .4 inch in height, plainly circumnutated; we may therefore conclude that older plants, whilst growing, would do the same.
 
Fig. 120. Lunularia vulgaris: circumnutation of a frond, traced from 9 A.M. Oct 25th to 8 A.M. 27th.
 
(35.) Lunularia vulgaris (Hepaticae, Fam. 11, Muscales).—The earth in an old flower-pot was coated with this plant, bearing gemmae. A highly inclined frond, which projected .3 inch above the soil and was .4 inch in breadth, was selected for observation. A glass hair of extreme tenuity, .75 inch in length, with its end whitened, was cemented with shellac to the frond at right angles to its breadth; and a white stick with a minute black spot was driven into the soil close behind the end of the hair. The white end could be accurately132 brought into a line with the black spot, and dots could thus be successively made on the vertical glass-plate in front. Any movement of the frond would of course be exhibited and increased by the long glass hair; and the black spot was placed so close behind the end of the hair, relatively133 to the distance of the glass-plate in front, that the movement of the end was magnified about 40 times. Nevertheless, we are convinced that our tracing gives a fairly faithful representation of the movements of the frond. In the intervals between each observation, the plant was covered by a small bell-glass. The frond, as already stated, [page 259] was highly inclined, and the pot stood in front of a north-east window. During the five first days the frond moved downwards or became less inclined; and the long line which was traced was strongly zigzag, with loops occasionally formed or nearly formed; and this indicated circumnutation. Whether the sinking was due to epinastic growth, or apheliotropism, we do not know. As the sinking was slight on the fifth day, a new tracing was begun on the sixth day (Oct. 25th), and was continued for 47 h.; it is here given (Fig. 120). Another tracing was made on the next day (27th) and the frond was found to be still circumnutating, for during 14 h. 30 m. it changed its course completely (besides minor changes) 10 times. It was casually134 observed for two more days, and was seen to be continually moving.
 
The lowest members of the vegetable series, the Thallogens, apparently circumnutate. If an Oscillaria be watched under the microscope, it may be seen to describe circles about every 40 seconds. After it has bent to one side, the tip first begins to bend back to the opposite side and then the whole filament curves over in the same direction. Hofmeister* has given a minute account of the curious, but less regular though constant, movements of Spirogyra: during 2 ? h. the filament moved 4 times to the left and 3 times to the right, and he refers to a movement at right angles to the above. The tip moved at the rate of about 0.1 mm. in five minutes. He compares the movement with the nutation of the higher plants.** We shall hereafter see that heliotropic movements result from modified circumnutation, and as unicellular Moulds bend to the light we may infer that they also circumnutate.]
 
CONCLUDING REMARKS ON THE CIRCUMNUTATION OF LEAVES.
 
The circumnutating movements of young leaves in 33 genera, belonging to 25 families, widely distributed
 
* 'Ueber die Bewegungen der Faden der Spirogyra princeps: Jahreshefte des Vereins für vaterl?ndische Naturkunde in Württemberg,' 1874, p. 211.
 
** Zukal also remarks (as quoted in 'Journal R. Microscop. Soc.,' 1880, vol. iii. p. 320) that the movements of Spirulina, a member of the Oscillatorieae, are closely analogous "to the well-known rotation135 of growing shoots and tendrils." [page 260]
 
amongst ordinary and gymnospermous Dicotyledons and amongst Monocotyledons, together with several Cryptogams, have now been described. It would, therefore, not be rash to assume that the growing leaves of all plants circumnutate, as we have seen reason to conclude is the case with cotyledons. The seat of movement generally lies in the petiole, but sometimes both in the petiole and blade, or in the blade alone. The extent of the movement differed much in different plants; but the distance passed over was never great, except with Pistia, which ought perhaps to have been included amongst sleeping plants. The angular movement of the leaves was only occasionally measured; it commonly varied from only 2o (and probably even less in some instances) to about 10o; but it amounted to 23o in the common bean. The movement is chiefly in a vertical plane, but as the ascending and descending lines never coincided, there was always some lateral movement, and thus irregular ellipses were formed. The movement, therefore, deserves to be called one of circumnutation; for all circumnutating organs tend to describe ellipses,—that is, growth on one side is succeeded by growth on nearly but not quite the opposite side. The ellipses, or the zigzag lines representing drawn-out ellipses, are generally very narrow; yet with the Camellia, their minor axes were half as long, and with the Eucalyptus more than half as long as their major axes. In the case of Cissus, parts of the figure more nearly represented circles than ellipses. The amount of lateral movement is therefore sometimes considerable. Moreover, the longer axes of the successively formed ellipses (as with the Bean, Cissus, and Sea-kale), and in several instances the zigzag lines representing ellipses, were extended in very different directions during the same day or on [page 261] the next day. The course followed was curvilinear or straight, or slightly or strongly zigzag, and little loops or triangles were often formed. A single large irregular ellipse may be described on one day, and two smaller ones by the same plant on the next day. With Drosera two, and with Lupinus, Eucalyptus and Pancratium, several were formed each day.
 
The oscillatory and jerking movements of the leaves of Dionaea, which resemble those of the hypocotyl of the cabbage, are highly remarkable, as seen under the microscope. They continue night and day for some months, and are displayed by young unexpanded leaves, and by old ones which have lost their sensibility to a touch, but which, after absorbing animal matter, close their lobes. We shall hereafter meet with the same kind of movement in the joints136 of certain Gramineae, and it is probably common to many plants while circumnutating. It is, therefore, a strange fact that no such movement could be detected in the tentacles of Drosera rotundifolia, though a member of the same family with Dionaea; yet the tentacle which was observed was so sensitive, that it began to curl inwards in 23 seconds after being touched by a bit of raw meat.
 
One of the most interesting facts with respect to the circumnutation of leaves is the periodicity of their movements; for they often, or even generally, rise a little in the evening and early part of the night, and sink again on the following morning. Exactly the same phenomenon was observed in the case of cotyledons. The leaves in 16 genera out of the 33 which were observed behaved in this manner, as did probably 2 others. Nor must it be supposed that in the remaining 15 genera there was no periodicity in their movements; for 6 of them were observed during too short a period for any judgment137 to be formed on this head, [page 262] and 3 were so young that their epinastic growth, which serves to bring them down into a horizontal position, overpowered every other kind of movement. In only one genus, Cannabis, did the leaves sink in the evening, and Kraus attributes this movement to the prepotency of their epinastic growth. That the periodicity is determined by the daily alternations of light and darkness there can hardly be a doubt, as will hereafter be shown. Insectivorous plants are very little affected, as far as their movements are concerned, by light; and hence probably it is that their leaves, at least in the cases of Sarracenia, Drosera, and Dionaea, do not move periodically. The upward movement in the evening is at first slow, and with different plants begins at very different hours;—with Glaucium as early as 11 A.M., commonly between 3 and 5 P.M., but sometimes as late as 7 P.M. It should be observed that none of the leaves described in this chapter (except, as we believe, those of Lupinus speciosus) possess a pulvinus; for the periodical movements of leaves thus provided have generally been amplified138 into so-called sleep-movements, with which we are not here concerned. The fact of leaves and cotyledons frequently, or even generally, rising a little in the evening and sinking in the morning, is of interest as giving the foundation from which the specialised sleep-movements of many leaves and cotyledons, not provided with a pulvinus, have been developed. the above periodicity should be kept in mind, by any one considering the problem of the horizontal position of leaves and cotyledons during the day, whilst illuminated from above. [page 263]

点击收听单词发音收听单词发音  

1 winding Ue7z09     
n.绕,缠,绕组,线圈
参考例句:
  • A winding lane led down towards the river.一条弯弯曲曲的小路通向河边。
  • The winding trail caused us to lose our orientation.迂回曲折的小道使我们迷失了方向。
2 seedlings b277b580afbd0e829dcc6bdb776b4a06     
n.刚出芽的幼苗( seedling的名词复数 )
参考例句:
  • Ninety-five per cent of the new seedlings have survived. 新栽的树苗95%都已成活。 来自《现代汉英综合大词典》
  • In such wet weather we must prevent the seedlings from rotting. 这样的阴雨天要防止烂秧。 来自《现代汉英综合大词典》
3 seedling GZYxQ     
n.秧苗,树苗
参考例句:
  • She cut down the seedling with one chop.她一刀就把小苗砍倒了。
  • The seedling are coming up full and green.苗长得茁壮碧绿。
4 determined duszmP     
adj.坚定的;有决心的
参考例句:
  • I have determined on going to Tibet after graduation.我已决定毕业后去西藏。
  • He determined to view the rooms behind the office.他决定查看一下办公室后面的房间。
5 fully Gfuzd     
adv.完全地,全部地,彻底地;充分地
参考例句:
  • The doctor asked me to breathe in,then to breathe out fully.医生让我先吸气,然后全部呼出。
  • They soon became fully integrated into the local community.他们很快就完全融入了当地人的圈子。
6 illuminated 98b351e9bc282af85e83e767e5ec76b8     
adj.被照明的;受启迪的
参考例句:
  • Floodlights illuminated the stadium. 泛光灯照亮了体育场。
  • the illuminated city at night 夜幕中万家灯火的城市
7 fig L74yI     
n.无花果(树)
参考例句:
  • The doctor finished the fig he had been eating and selected another.这位医生吃完了嘴里的无花果,又挑了一个。
  • You can't find a person who doesn't know fig in the United States.你找不到任何一个在美国的人不知道无花果的。
8 par OK0xR     
n.标准,票面价值,平均数量;adj.票面的,平常的,标准的
参考例句:
  • Sales of nylon have been below par in recent years.近年来尼龙织品的销售额一直不及以往。
  • I don't think his ability is on a par with yours.我认为他的能力不能与你的能力相媲美。
9 vertical ZiywU     
adj.垂直的,顶点的,纵向的;n.垂直物,垂直的位置
参考例句:
  • The northern side of the mountain is almost vertical.这座山的北坡几乎是垂直的。
  • Vertical air motions are not measured by this system.垂直气流的运动不用这种系统来测量。
10 fore ri8xw     
adv.在前面;adj.先前的;在前部的;n.前部
参考例句:
  • Your seat is in the fore part of the aircraft.你的座位在飞机的前部。
  • I have the gift of fore knowledge.我能够未卜先知。
11 revolve NBBzX     
vi.(使)旋转;循环出现
参考例句:
  • The planets revolve around the sun.行星绕着太阳运转。
  • The wheels began to revolve slowly.车轮开始慢慢转动。
12 bead hdbyl     
n.念珠;(pl.)珠子项链;水珠
参考例句:
  • She accidentally swallowed a glass bead.她不小心吞下了一颗玻璃珠。
  • She has a beautiful glass bead and a bracelet in the box.盒子里有一颗美丽的玻璃珠和手镯。
13 filament sgCzj     
n.细丝;长丝;灯丝
参考例句:
  • The source of electrons in an electron microscope is a heated filament.电子显微镜中的电子源,是一加热的灯丝。
  • The lack of air in the bulb prevents the filament from burning up.灯泡内缺乏空气就使灯丝不致烧掉。
14 previously bkzzzC     
adv.以前,先前(地)
参考例句:
  • The bicycle tyre blew out at a previously damaged point.自行车胎在以前损坏过的地方又爆开了。
  • Let me digress for a moment and explain what had happened previously.让我岔开一会儿,解释原先发生了什么。
15 bent QQ8yD     
n.爱好,癖好;adj.弯的;决心的,一心的
参考例句:
  • He was fully bent upon the project.他一心扑在这项计划上。
  • We bent over backward to help them.我们尽了最大努力帮助他们。
16 zigzag Hf6wW     
n.曲折,之字形;adj.曲折的,锯齿形的;adv.曲折地,成锯齿形地;vt.使曲折;vi.曲折前行
参考例句:
  • The lightning made a zigzag in the sky.闪电在天空划出一道Z字形。
  • The path runs zigzag up the hill.小径向山顶蜿蜒盘旋。
17 dwarf EkjzH     
n.矮子,侏儒,矮小的动植物;vt.使…矮小
参考例句:
  • The dwarf's long arms were not proportional to his height.那侏儒的长臂与他的身高不成比例。
  • The dwarf shrugged his shoulders and shook his head. 矮子耸耸肩膀,摇摇头。
18 twine vg6yC     
v.搓,织,编饰;(使)缠绕
参考例句:
  • He tied the parcel with twine.他用细绳捆包裹。
  • Their cardboard boxes were wrapped and tied neatly with waxed twine.他们的纸板盒用蜡线扎得整整齐齐。
19 conspicuous spszE     
adj.明眼的,惹人注目的;炫耀的,摆阔气的
参考例句:
  • It is conspicuous that smoking is harmful to health.很明显,抽烟对健康有害。
  • Its colouring makes it highly conspicuous.它的色彩使它非常惹人注目。
20 apparently tMmyQ     
adv.显然地;表面上,似乎
参考例句:
  • An apparently blind alley leads suddenly into an open space.山穷水尽,豁然开朗。
  • He was apparently much surprised at the news.他对那个消息显然感到十分惊异。
21 ascertain WNVyN     
vt.发现,确定,查明,弄清
参考例句:
  • It's difficult to ascertain the coal deposits.煤储量很难探明。
  • We must ascertain the responsibility in light of different situtations.我们必须根据不同情况判定责任。
22 ellipses 80016ca1ead584db2209b9bdd97c184f     
n.椭园,省略号;椭圆( ellipse的名词复数 );(语法结构上的)省略( ellipsis的名词复数 )
参考例句:
  • The planets move around the sun in ellipses. 各行星围绕太阳按椭圆形运转。 来自《简明英汉词典》
  • Summations are almost invariably indicated ellipses instead of the more prevalent sigma notation. 在表示“连加”的式子中,几乎一成不变地使用省略号来代替更为流行的“∑”符号。 来自辞典例句
23 hybrid pcBzu     
n.(动,植)杂种,混合物
参考例句:
  • That is a hybrid perpetual rose.那是一株杂交的四季开花的蔷薇。
  • The hybrid was tall,handsome,and intelligent.那混血儿高大、英俊、又聪明。
24 triangular 7m1wc     
adj.三角(形)的,三者间的
参考例句:
  • It's more or less triangular plot of land.这块地略成三角形。
  • One particular triangular relationship became the model of Simone's first novel.一段特殊的三角关系成了西蒙娜第一本小说的原型。
25 affixed 0732dcfdc852b2620b9edaa452082857     
adj.[医]附着的,附着的v.附加( affix的过去式和过去分词 );粘贴;加以;盖(印章)
参考例句:
  • The label should be firmly affixed to the package. 这张标签应该牢牢地贴在包裹上。
  • He affixed the sign to the wall. 他将标记贴到墙上。 来自《简明英汉词典》
26 fixed JsKzzj     
adj.固定的,不变的,准备好的;(计算机)固定的
参考例句:
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
27 rigid jDPyf     
adj.严格的,死板的;刚硬的,僵硬的
参考例句:
  • She became as rigid as adamant.她变得如顽石般的固执。
  • The examination was so rigid that nearly all aspirants were ruled out.考试很严,几乎所有的考生都被淘汰了。
28 vertically SfmzYG     
adv.垂直地
参考例句:
  • Line the pages for the graph both horizontally and vertically.在这几页上同时画上横线和竖线,以便制作图表。
  • The human brain is divided vertically down the middle into two hemispheres.人脑从中央垂直地分为两半球。
29 interval 85kxY     
n.间隔,间距;幕间休息,中场休息
参考例句:
  • The interval between the two trees measures 40 feet.这两棵树的间隔是40英尺。
  • There was a long interval before he anwsered the telephone.隔了好久他才回了电话。
30 lateral 83ey7     
adj.侧面的,旁边的
参考例句:
  • An airfoil that controls lateral motion.能够控制横向飞行的机翼。
  • Mr.Dawson walked into the court from a lateral door.道森先生从一个侧面的门走进法庭。
31 deflected 3ff217d1b7afea5ab74330437461da11     
偏离的
参考例句:
  • The ball deflected off Reid's body into the goal. 球打在里德身上反弹进球门。
  • Most of its particles are deflected. 此物质的料子大多是偏斜的。
32 standing 2hCzgo     
n.持续,地位;adj.永久的,不动的,直立的,不流动的
参考例句:
  • After the earthquake only a few houses were left standing.地震过后只有几幢房屋还立着。
  • They're standing out against any change in the law.他们坚决反对对法律做任何修改。
33 zigzagged 81e4abcab1a598002ec58745d5f3d496     
adj.呈之字形移动的v.弯弯曲曲地走路,曲折地前进( zigzag的过去式和过去分词 )
参考例句:
  • The office buildings were slightly zigzagged to fit available ground space. 办公大楼为了配合可用的地皮建造得略呈之字形。 来自《现代英汉综合大词典》
  • The lightning zigzagged through the church yard. 闪电呈之字形划过教堂的院子。 来自《简明英汉词典》
34 upwards lj5wR     
adv.向上,在更高处...以上
参考例句:
  • The trend of prices is still upwards.物价的趋向是仍在上涨。
  • The smoke rose straight upwards.烟一直向上升。
35 amplitude nLdyJ     
n.广大;充足;振幅
参考例句:
  • The amplitude of the vibration determines the loudness of the sound.振动幅度的大小决定声音的大小。
  • The amplitude at the driven end is fixed by the driving mechanism.由于驱动机构的作用,使驱动端的振幅保持不变。
36 affected TzUzg0     
adj.不自然的,假装的
参考例句:
  • She showed an affected interest in our subject.她假装对我们的课题感到兴趣。
  • His manners are affected.他的态度不自然。
37 apex mwrzX     
n.顶点,最高点
参考例句:
  • He reached the apex of power in the early 1930s.他在三十年代初达到了权力的顶峰。
  • His election to the presidency was the apex of his career.当选总统是他一生事业的顶峰。
38 tout iG7yL     
v.推销,招徕;兜售;吹捧,劝诱
参考例句:
  • They say it will let them tout progress in the war.他们称这将有助于鼓吹他们在战争中的成果。
  • If your case studies just tout results,don't bother requiring registration to view them.如果你的案例研究只是吹捧结果,就别烦扰别人来注册访问了。
39 remarkable 8Vbx6     
adj.显著的,异常的,非凡的,值得注意的
参考例句:
  • She has made remarkable headway in her writing skills.她在写作技巧方面有了长足进步。
  • These cars are remarkable for the quietness of their engines.这些汽车因发动机没有噪音而不同凡响。
40 revolving 3jbzvd     
adj.旋转的,轮转式的;循环的v.(使)旋转( revolve的现在分词 );细想
参考例句:
  • The theatre has a revolving stage. 剧院有一个旋转舞台。
  • The company became a revolving-door workplace. 这家公司成了工作的中转站。
41 noted 5n4zXc     
adj.著名的,知名的
参考例句:
  • The local hotel is noted for its good table.当地的那家酒店以餐食精美而著称。
  • Jim is noted for arriving late for work.吉姆上班迟到出了名。
42 elongated 6a3aeff7c3bf903f4176b42850937718     
v.延长,加长( elongate的过去式和过去分词 )
参考例句:
  • Modigliani's women have strangely elongated faces. 莫迪里阿尼画中的妇女都长着奇长无比的脸。
  • A piece of rubber can be elongated by streching. 一块橡皮可以拉长。 来自《用法词典》
43 spire SF3yo     
n.(教堂)尖顶,尖塔,高点
参考例句:
  • The church spire was struck by lightning.教堂的尖顶遭到了雷击。
  • They could just make out the spire of the church in the distance.他们只能辨认出远处教堂的尖塔。
44 intervals f46c9d8b430e8c86dea610ec56b7cbef     
n.[军事]间隔( interval的名词复数 );间隔时间;[数学]区间;(戏剧、电影或音乐会的)幕间休息
参考例句:
  • The forecast said there would be sunny intervals and showers. 预报间晴,有阵雨。
  • Meetings take place at fortnightly intervals. 每两周开一次会。
45 zigzags abaf3e38b28a59d9998c85607babdaee     
n.锯齿形的线条、小径等( zigzag的名词复数 )v.弯弯曲曲地走路,曲折地前进( zigzag的第三人称单数 )
参考例句:
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
  • History moves in zigzags and by roundabout ways. 历史的发展是曲折的,迂回的。 来自《现代汉英综合大词典》
46 complexity KO9z3     
n.复杂(性),复杂的事物
参考例句:
  • Only now did he understand the full complexity of the problem.直到现在他才明白这一问题的全部复杂性。
  • The complexity of the road map puzzled me.错综复杂的公路图把我搞糊涂了。
47 downwards MsDxU     
adj./adv.向下的(地),下行的(地)
参考例句:
  • He lay face downwards on his bed.他脸向下伏在床上。
  • As the river flows downwards,it widens.这条河愈到下游愈宽。
48 consecutive DpPz0     
adj.连续的,联贯的,始终一贯的
参考例句:
  • It has rained for four consecutive days.已连续下了四天雨。
  • The policy of our Party is consecutive.我党的政策始终如一。
49 ascertained e6de5c3a87917771a9555db9cf4de019     
v.弄清,确定,查明( ascertain的过去式和过去分词 )
参考例句:
  • The previously unidentified objects have now been definitely ascertained as being satellites. 原来所说的不明飞行物现在已证实是卫星。 来自《简明英汉词典》
  • I ascertained that she was dead. 我断定她已经死了。 来自《简明英汉词典》
50 remarkably EkPzTW     
ad.不同寻常地,相当地
参考例句:
  • I thought she was remarkably restrained in the circumstances. 我认为她在那种情况下非常克制。
  • He made a remarkably swift recovery. 他康复得相当快。
51 prostrate 7iSyH     
v.拜倒,平卧,衰竭;adj.拜倒的,平卧的,衰竭的
参考例句:
  • She was prostrate on the floor.她俯卧在地板上。
  • The Yankees had the South prostrate and they intended to keep It'so.北方佬已经使南方屈服了,他们还打算继续下去。
52 permanently KluzuU     
adv.永恒地,永久地,固定不变地
参考例句:
  • The accident left him permanently scarred.那次事故给他留下了永久的伤疤。
  • The ship is now permanently moored on the Thames in London.该船现在永久地停泊在伦敦泰晤士河边。
53 sinuous vExz4     
adj.蜿蜒的,迂回的
参考例句:
  • The river wound its sinuous way across the plain.这条河蜿蜒曲折地流过平原。
  • We moved along the sinuous gravel walks,with the great concourse of girls and boys.我们沿着曲折的石径,随着男孩女孩汇成的巨流一路走去。
54 recur wCqyG     
vi.复发,重现,再发生
参考例句:
  • Economic crises recur periodically.经济危机周期性地发生。
  • Of course,many problems recur at various periods.当然,有许多问题会在不同的时期反复提出。
55 opposition eIUxU     
n.反对,敌对
参考例句:
  • The party leader is facing opposition in his own backyard.该党领袖在自己的党內遇到了反对。
  • The police tried to break down the prisoner's opposition.警察设法制住了那个囚犯的反抗。
56 friction JQMzr     
n.摩擦,摩擦力
参考例句:
  • When Joan returned to work,the friction between them increased.琼回来工作后,他们之间的摩擦加剧了。
  • Friction acts on moving bodies and brings them to a stop.摩擦力作用于运动着的物体,并使其停止。
57 interfere b5lx0     
v.(in)干涉,干预;(with)妨碍,打扰
参考例句:
  • If we interfere, it may do more harm than good.如果我们干预的话,可能弊多利少。
  • When others interfere in the affair,it always makes troubles. 别人一卷入这一事件,棘手的事情就来了。
58 surmounted 74f42bdb73dca8afb25058870043665a     
战胜( surmount的过去式和过去分词 ); 克服(困难); 居于…之上; 在…顶上
参考例句:
  • She was well aware of the difficulties that had to be surmounted. 她很清楚必须克服哪些困难。
  • I think most of these obstacles can be surmounted. 我认为这些障碍大多数都是可以克服的。
59 recoiled 8282f6b353b1fa6f91b917c46152c025     
v.畏缩( recoil的过去式和过去分词 );退缩;报应;返回
参考例句:
  • She recoiled from his touch. 她躲开他的触摸。
  • Howard recoiled a little at the sharpness in my voice. 听到我的尖声,霍华德往后缩了一下。 来自《简明英汉词典》
60 ascend avnzD     
vi.渐渐上升,升高;vt.攀登,登上
参考例句:
  • We watched the airplane ascend higher and higher.我们看着飞机逐渐升高。
  • We ascend in the order of time and of development.我们按时间和发展顺序向上溯。
61 ascending CyCzrc     
adj.上升的,向上的
参考例句:
  • Now draw or trace ten dinosaurs in ascending order of size.现在按照体型由小到大的顺序画出或是临摹出10只恐龙。
62 descend descend     
vt./vi.传下来,下来,下降
参考例句:
  • I hope the grace of God would descend on me.我期望上帝的恩惠。
  • We're not going to descend to such methods.我们不会沦落到使用这种手段。
63 descended guQzoy     
a.为...后裔的,出身于...的
参考例句:
  • A mood of melancholy descended on us. 一种悲伤的情绪袭上我们的心头。
  • The path descended the hill in a series of zigzags. 小路呈连续的之字形顺着山坡蜿蜒而下。
64 diverge FlTzZ     
v.分叉,分歧,离题,使...岔开,使转向
参考例句:
  • This is where our opinions diverge from each other.这就是我们意见产生分歧之处。
  • Don't diverge in your speech.发言不要离题。
65 moss X6QzA     
n.苔,藓,地衣
参考例句:
  • Moss grows on a rock.苔藓生在石头上。
  • He was found asleep on a pillow of leaves and moss.有人看见他枕着树叶和苔藓睡着了。
66 acting czRzoc     
n.演戏,行为,假装;adj.代理的,临时的,演出用的
参考例句:
  • Ignore her,she's just acting.别理她,她只是假装的。
  • During the seventies,her acting career was in eclipse.在七十年代,她的表演生涯黯然失色。
67 oblique x5czF     
adj.斜的,倾斜的,无诚意的,不坦率的
参考例句:
  • He made oblique references to her lack of experience.他拐弯抹角地说她缺乏经验。
  • She gave an oblique look to one side.她向旁边斜看了一眼。
68 specially Hviwq     
adv.特定地;特殊地;明确地
参考例句:
  • They are specially packaged so that they stack easily.它们经过特别包装以便于堆放。
  • The machine was designed specially for demolishing old buildings.这种机器是专为拆毁旧楼房而设计的。
69 briefly 9Styo     
adv.简单地,简短地
参考例句:
  • I want to touch briefly on another aspect of the problem.我想简单地谈一下这个问题的另一方面。
  • He was kidnapped and briefly detained by a terrorist group.他被一个恐怖组织绑架并短暂拘禁。
70 botanists 22548cbfc651e84a87843ff3505735d9     
n.植物学家,研究植物的人( botanist的名词复数 )
参考例句:
  • Botanists had some difficulty categorizing the newly found plant. 植物学家们不大容易确定这种新发现的植物的种类。 来自辞典例句
  • Botanists refer this flower to the rose family. 植物学家将这花归入蔷薇科。 来自辞典例句
71 withered 342a99154d999c47f1fc69d900097df9     
adj. 枯萎的,干瘪的,(人身体的部分器官)因病萎缩的或未发育良好的 动词wither的过去式和过去分词形式
参考例句:
  • The grass had withered in the warm sun. 这些草在温暖的阳光下枯死了。
  • The leaves of this tree have become dry and withered. 这棵树下的叶子干枯了。
72 exterior LlYyr     
adj.外部的,外在的;表面的
参考例句:
  • The seed has a hard exterior covering.这种子外壳很硬。
  • We are painting the exterior wall of the house.我们正在给房子的外墙涂漆。
73 exteriorly ffdf5fa178bcde9085b87868b9560133     
adv.从外部,表面上
参考例句:
  • It is quite unobjectionable exteriorly. 就外表而言,这是完全无可厚非的。 来自辞典例句
74 rim RXSxl     
n.(圆物的)边,轮缘;边界
参考例句:
  • The water was even with the rim of the basin.盆里的水与盆边平齐了。
  • She looked at him over the rim of her glass.她的目光越过玻璃杯的边沿看着他。
75 distinguished wu9z3v     
adj.卓越的,杰出的,著名的
参考例句:
  • Elephants are distinguished from other animals by their long noses.大象以其长长的鼻子显示出与其他动物的不同。
  • A banquet was given in honor of the distinguished guests.宴会是为了向贵宾们致敬而举行的。
76 sufficiently 0htzMB     
adv.足够地,充分地
参考例句:
  • It turned out he had not insured the house sufficiently.原来他没有给房屋投足保险。
  • The new policy was sufficiently elastic to accommodate both views.新政策充分灵活地适用两种观点。
77 specified ZhezwZ     
adj.特定的
参考例句:
  • The architect specified oak for the wood trim. 那位建筑师指定用橡木做木饰条。
  • It is generated by some specified means. 这是由某些未加说明的方法产生的。
78 pitcher S2Gz7     
n.(有嘴和柄的)大水罐;(棒球)投手
参考例句:
  • He poured the milk out of the pitcher.他从大罐中倒出牛奶。
  • Any pitcher is liable to crack during a tight game.任何投手在紧张的比赛中都可能会失常。
79 swollen DrcwL     
adj.肿大的,水涨的;v.使变大,肿胀
参考例句:
  • Her legs had got swollen from standing up all day.因为整天站着,她的双腿已经肿了。
  • A mosquito had bitten her and her arm had swollen up.蚊子叮了她,她的手臂肿起来了。
80 hood ddwzJ     
n.头巾,兜帽,覆盖;v.罩上,以头巾覆盖
参考例句:
  • She is wearing a red cloak with a hood.她穿着一件红色带兜帽的披风。
  • The car hood was dented in.汽车的发动机罩已凹了进去。
81 ascended ea3eb8c332a31fe6393293199b82c425     
v.上升,攀登( ascend的过去式和过去分词 )
参考例句:
  • He has ascended into heaven. 他已经升入了天堂。 来自《简明英汉词典》
  • The climbers slowly ascended the mountain. 爬山运动员慢慢地登上了这座山。 来自《简明英汉词典》
82 considerably 0YWyQ     
adv.极大地;相当大地;在很大程度上
参考例句:
  • The economic situation has changed considerably.经济形势已发生了相当大的变化。
  • The gap has narrowed considerably.分歧大大缩小了。
83 insufficient L5vxu     
adj.(for,of)不足的,不够的
参考例句:
  • There was insufficient evidence to convict him.没有足够证据给他定罪。
  • In their day scientific knowledge was insufficient to settle the matter.在他们的时代,科学知识还不能足以解决这些问题。
84 insufficiently ZqezDU     
adv.不够地,不能胜任地
参考例句:
  • Your insurance card is insufficiently stamped. 你的保险卡片未贴足印花。 来自辞典例句
  • Many of Britain's people are poorly dressed, badly housed, insufficiently nourished. 许多英国人衣着寒伧,居住简陋,营养不良。 来自互联网
85 flora 4j7x1     
n.(某一地区的)植物群
参考例句:
  • The subtropical island has a remarkably rich native flora.这个亚热带岛屿有相当丰富的乡土植物种类。
  • All flora need water and light.一切草木都需要水和阳光。
86 descending descending     
n. 下行 adj. 下降的
参考例句:
  • The results are expressed in descending numerical order . 结果按数字降序列出。
  • The climbers stopped to orient themselves before descending the mountain. 登山者先停下来确定所在的位置,然后再下山。
87 taper 3IVzm     
n.小蜡烛,尖细,渐弱;adj.尖细的;v.逐渐变小
参考例句:
  • You'd better taper off the amount of time given to rest.你最好逐渐地减少休息时间。
  • Pulmonary arteries taper towards periphery.肺动脉向周围逐渐变细。
88 ascent TvFzD     
n.(声望或地位)提高;上升,升高;登高
参考例句:
  • His rapid ascent in the social scale was surprising.他的社会地位提高之迅速令人吃惊。
  • Burke pushed the button and the elevator began its slow ascent.伯克按动电钮,电梯开始缓慢上升。
89 inverted 184401f335d6b8661e04dfea47b9dcd5     
adj.反向的,倒转的v.使倒置,使反转( invert的过去式和过去分词 )
参考例句:
  • Only direct speech should go inside inverted commas. 只有直接引语应放在引号内。
  • Inverted flight is an acrobatic manoeuvre of the plane. 倒飞是飞机的一种特技动作。 来自《简明英汉词典》
90 turnip dpByj     
n.萝卜,芜菁
参考例句:
  • The turnip provides nutrition for you.芜菁为你提供营养。
  • A turnip is a root vegetable.芜菁是根茎类植物。
91 outwards NJuxN     
adj.外面的,公开的,向外的;adv.向外;n.外形
参考例句:
  • Does this door open inwards or outwards?这门朝里开还是朝外开?
  • In lapping up a fur,they always put the inner side outwards.卷毛皮时,他们总是让内层朝外。
92 tortuous 7J2za     
adj.弯弯曲曲的,蜿蜒的
参考例句:
  • We have travelled a tortuous road.我们走过了曲折的道路。
  • They walked through the tortuous streets of the old city.他们步行穿过老城区中心弯弯曲曲的街道。
93 pointed Il8zB4     
adj.尖的,直截了当的
参考例句:
  • He gave me a very sharp pointed pencil.他给我一支削得非常尖的铅笔。
  • She wished to show Mrs.John Dashwood by this pointed invitation to her brother.她想通过对达茨伍德夫人提出直截了当的邀请向她的哥哥表示出来。
94 analogous aLdyQ     
adj.相似的;类似的
参考例句:
  • The two situations are roughly analogous.两种情況大致相似。
  • The company is in a position closely analogous to that of its main rival.该公司与主要竞争对手的处境极为相似。
95 tentacle nIrz9     
n.触角,触须,触手
参考例句:
  • Each tentacle is about two millimeters long.每一个触手大约两毫米长。
  • It looked like a big eyeball with a long tentacle thing.它看上去像一个有着长触角的巨大眼球。
96 tentacles de6ad1cd521db1ee7397e4ed9f18a212     
n.触手( tentacle的名词复数 );触角;触须;触毛
参考例句:
  • Tentacles of fear closed around her body. 恐惧的阴影笼罩着她。
  • Many molluscs have tentacles. 很多软体动物有触角。 来自《简明英汉词典》
97 gland qeGzu     
n.腺体,(机)密封压盖,填料盖
参考例句:
  • This is a snake's poison gland.这就是蛇的毒腺。
  • Her mother has an underactive adrenal gland.她的母亲肾上腺机能不全。
98 glands 82573e247a54d4ca7619fbc1a5141d80     
n.腺( gland的名词复数 )
参考例句:
  • a snake's poison glands 蛇的毒腺
  • the sebaceous glands in the skin 皮脂腺
99 secreting 47e7bdbfbae077baace25c92a8fda97d     
v.(尤指动物或植物器官)分泌( secrete的现在分词 );隐匿,隐藏
参考例句:
  • It is also an endocrine gland secreting at least two important hormones. 它也是一种内分泌腺,至少分泌二种重要的激素。 来自辞典例句
  • And some calcite-secreting organisms also add magnesium to the mix. 有些分泌方解石的生物,会在分泌物中加入镁。 来自互联网
100 stimulate wuSwL     
vt.刺激,使兴奋;激励,使…振奋
参考例句:
  • Your encouragement will stimulate me to further efforts.你的鼓励会激发我进一步努力。
  • Success will stimulate the people for fresh efforts.成功能鼓舞人们去作新的努力。
101 margin 67Mzp     
n.页边空白;差额;余地,余裕;边,边缘
参考例句:
  • We allowed a margin of 20 minutes in catching the train.我们有20分钟的余地赶火车。
  • The village is situated at the margin of a forest.村子位于森林的边缘。
102 stimulus 3huyO     
n.刺激,刺激物,促进因素,引起兴奋的事物
参考例句:
  • Regard each failure as a stimulus to further efforts.把每次失利看成对进一步努力的激励。
  • Light is a stimulus to growth in plants.光是促进植物生长的一个因素。
103 lobes fe8c3178c8180f03dd0fc8ae16f13e3c     
n.耳垂( lobe的名词复数 );(器官的)叶;肺叶;脑叶
参考例句:
  • The rotor has recesses in its three faces between the lobes. 转子在其凸角之间的三个面上有凹槽。 来自辞典例句
  • The chalazal parts of the endosperm containing free nuclei forms several lobes. 包含游离核的合点端胚乳部分形成几个裂片。 来自辞典例句
104 drawn MuXzIi     
v.拖,拉,拔出;adj.憔悴的,紧张的
参考例句:
  • All the characters in the story are drawn from life.故事中的所有人物都取材于生活。
  • Her gaze was drawn irresistibly to the scene outside.她的目光禁不住被外面的风景所吸引。
105 infusion CbAz1     
n.灌输
参考例句:
  • Old families need an infusion of new blood from time to time.古老的家族需要不时地注入新鲜血液。
  • Careful observation of the infusion site is necessary.必须仔细观察输液部位。
106 spikes jhXzrc     
n.穗( spike的名词复数 );跑鞋;(防滑)鞋钉;尖状物v.加烈酒于( spike的第三人称单数 );偷偷地给某人的饮料加入(更多)酒精( 或药物);把尖状物钉入;打乱某人的计划
参考例句:
  • a row of iron spikes on a wall 墙头的一排尖铁
  • There is a row of spikes on top of the prison wall to prevent the prisoners escaping. 监狱墙头装有一排尖钉,以防犯人逃跑。 来自《简明英汉词典》
107 spike lTNzO     
n.长钉,钉鞋;v.以大钉钉牢,使...失效
参考例句:
  • The spike pierced the receipts and held them in order.那个钉子穿过那些收据并使之按顺序排列。
  • They'll do anything to spike the guns of the opposition.他们会使出各种手段来挫败对手。
108 filaments 82be78199276cbe86e0e8b6c084015b6     
n.(电灯泡的)灯丝( filament的名词复数 );丝极;细丝;丝状物
参考例句:
  • Instead, sarcomere shortening occurs when the thin filaments'slide\" by the thick filaments. 此外,肌节的缩短发生于细肌丝沿粗肌丝“滑行”之际。 来自辞典例句
  • Wetting-force data on filaments of any diameter and shape can easily obtained. 各种直径和形状的长丝的润湿力数据是易于测量的。 来自辞典例句
109 stimulated Rhrz78     
a.刺激的
参考例句:
  • The exhibition has stimulated interest in her work. 展览增进了人们对她作品的兴趣。
  • The award has stimulated her into working still harder. 奖金促使她更加努力地工作。
110 perpendicularly 914de916890a9aa3714fa26fe542c2df     
adv. 垂直地, 笔直地, 纵向地
参考例句:
  • Fray's forehead was wrinkled both perpendicularly and crosswise. 弗雷的前额上纹路纵横。
  • Automatic resquaring feature insures nozzle is perpendicularly to the part being cut. 自动垂直功能,可以确保刀头回到与工件完全垂直的位置去切割。
111 backwards BP9ya     
adv.往回地,向原处,倒,相反,前后倒置地
参考例句:
  • He turned on the light and began to pace backwards and forwards.他打开电灯并开始走来走去。
  • All the girls fell over backwards to get the party ready.姑娘们迫不及待地为聚会做准备。
112 minor e7fzR     
adj.较小(少)的,较次要的;n.辅修学科;vi.辅修
参考例句:
  • The young actor was given a minor part in the new play.年轻的男演员在这出新戏里被分派担任一个小角色。
  • I gave him a minor share of my wealth.我把小部分财产给了他。
113 margins 18cef75be8bf936fbf6be827537c8585     
边( margin的名词复数 ); 利润; 页边空白; 差数
参考例句:
  • They have always had to make do with relatively small profit margins. 他们不得不经常设法应付较少的利润额。
  • To create more space between the navigation items, add left and right margins to the links. 在每个项目间留更多的空隙,加左或者右的margins来定义链接。
114 constraint rYnzo     
n.(on)约束,限制;限制(或约束)性的事物
参考例句:
  • The boy felt constraint in her presence.那男孩在她面前感到局促不安。
  • The lack of capital is major constraint on activities in the informal sector.资本短缺也是影响非正规部门生产经营的一个重要制约因素。
115 eucalyptus jnaxm     
n.桉树,桉属植物
参考例句:
  • Eucalyptus oil is good for easing muscular aches and pains.桉树油可以很好地缓解肌肉的疼痛。
  • The birds rustled in the eucalyptus trees.鸟在桉树弄出沙沙的响声。
116 inclination Gkwyj     
n.倾斜;点头;弯腰;斜坡;倾度;倾向;爱好
参考例句:
  • She greeted us with a slight inclination of the head.她微微点头向我们致意。
  • I did not feel the slightest inclination to hurry.我没有丝毫着急的意思。
117 strictly GtNwe     
adv.严厉地,严格地;严密地
参考例句:
  • His doctor is dieting him strictly.他的医生严格规定他的饮食。
  • The guests were seated strictly in order of precedence.客人严格按照地位高低就座。
118 shrub 7ysw5     
n.灌木,灌木丛
参考例句:
  • There is a small evergreen shrub on the hillside.山腰上有一小块常绿灌木丛。
  • Moving a shrub is best done in early spring.移植灌木最好是在初春的时候。
119 requisite 2W0xu     
adj.需要的,必不可少的;n.必需品
参考例句:
  • He hasn't got the requisite qualifications for the job.他不具备这工作所需的资格。
  • Food and air are requisite for life.食物和空气是生命的必需品。
120 petunia mlxzq2     
n.矮牵牛花
参考例句:
  • Height,breadth and diameter of corolla are the important ornamental characters of petunia.株高、冠幅、花径是矮牵牛的重要观赏性状。
  • His favourite flower is petunia.他最喜欢的花是矮牵牛花。
121 allied iLtys     
adj.协约国的;同盟国的
参考例句:
  • Britain was allied with the United States many times in history.历史上英国曾多次与美国结盟。
  • Allied forces sustained heavy losses in the first few weeks of the campaign.同盟国在最初几周内遭受了巨大的损失。
122 diverged db5a93fff259ad3ff2017a64912fa156     
分开( diverge的过去式和过去分词 ); 偏离; 分歧; 分道扬镳
参考例句:
  • Who knows when we'll meet again? 不知几时咱们能再见面!
  • At what time do you get up? 你几时起床?
123 iris Ekly8     
n.虹膜,彩虹
参考例句:
  • The opening of the iris is called the pupil.虹膜的开口处叫做瞳孔。
  • This incredible human eye,complete with retina and iris,can be found in the Maldives.又是在马尔代夫,有这样一只难以置信的眼睛,连视网膜和虹膜都刻画齐全了。
124 tapering pq5wC     
adj.尖端细的
参考例句:
  • Interest in the scandal seems to be tapering off. 人们对那件丑闻的兴趣似乎越来越小了。
  • Nonproductive expenditures keep tapering down. 非生产性开支一直在下降。
125 laterally opIzAf     
ad.横向地;侧面地;旁边地
参考例句:
  • Shafts were sunk, with tunnels dug laterally. 竖井已经打下,并且挖有横向矿道。
  • When the plate becomes unstable, it buckles laterally. 当板失去稳定时,就发生横向屈曲。
126 obliquely ad073d5d92dfca025ebd4a198e291bdc     
adv.斜; 倾斜; 间接; 不光明正大
参考例句:
  • From the gateway two paths led obliquely across the court. 从门口那儿,有两条小路斜越过院子。 来自辞典例句
  • He was receding obliquely with a curious hurrying gait. 他歪着身子,古怪而急促地迈着步子,往后退去。 来自辞典例句
127 diurnal ws5xi     
adj.白天的,每日的
参考例句:
  • Kangaroos are diurnal animals.袋鼠是日间活动的动物。
  • Over water the diurnal change in refraction is likely to be small. 在水面上,折光的周日变化可能是很小的。
128 varied giIw9     
adj.多样的,多变化的
参考例句:
  • The forms of art are many and varied.艺术的形式是多种多样的。
  • The hotel has a varied programme of nightly entertainment.宾馆有各种晚间娱乐活动。
129 frond Jhbxr     
n.棕榈类植物的叶子
参考例句:
  • The weavers made a hat from palm fronds.织工用棕榈叶织成了一顶帽子。
  • The village hut was thatched with palm fronds.乡村小屋用棕榈叶作顶。
130 lobed 97457137d788dc941364fb6d686d5114     
adj.浅裂的,叶状的
参考例句:
  • The testes are lobed organs. 精巢为叶状器官。 来自辞典例句
  • Old World vine with lobed evergreen leaves and black berrylike fruits. 有分裂的常青叶子和黑色小而圆的果实的旧大陆藤蔓植物。 来自互联网
131 fronds f5152cd32d7f60e88e3dfd36fcdfbfa8     
n.蕨类或棕榈类植物的叶子( frond的名词复数 )
参考例句:
  • You can pleat palm fronds to make huts, umbrellas and baskets. 人们可以把棕榈叶折叠起来盖棚屋,制伞,编篮子。 来自百科语句
  • When these breezes reached the platform the palm-fronds would whisper. 微风吹到平台时,棕榈叶片发出簌簌的低吟。 来自辞典例句
132 accurately oJHyf     
adv.准确地,精确地
参考例句:
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
133 relatively bkqzS3     
adv.比较...地,相对地
参考例句:
  • The rabbit is a relatively recent introduction in Australia.兔子是相对较新引入澳大利亚的物种。
  • The operation was relatively painless.手术相对来说不痛。
134 casually UwBzvw     
adv.漠不关心地,无动于衷地,不负责任地
参考例句:
  • She remarked casually that she was changing her job.她当时漫不经心地说要换工作。
  • I casually mentioned that I might be interested in working abroad.我不经意地提到我可能会对出国工作感兴趣。
135 rotation LXmxE     
n.旋转;循环,轮流
参考例句:
  • Crop rotation helps prevent soil erosion.农作物轮作有助于防止水土流失。
  • The workers in this workshop do day and night shifts in weekly rotation.这个车间的工人上白班和上夜班每周轮换一次。
136 joints d97dcffd67eca7255ca514e4084b746e     
接头( joint的名词复数 ); 关节; 公共场所(尤指价格低廉的饮食和娱乐场所) (非正式); 一块烤肉 (英式英语)
参考例句:
  • Expansion joints of various kinds are fitted on gas mains. 各种各样的伸缩接头被安装在煤气的总管道上了。
  • Expansion joints of various kinds are fitted on steam pipes. 各种各样的伸缩接头被安装在蒸气管道上了。
137 judgment e3xxC     
n.审判;判断力,识别力,看法,意见
参考例句:
  • The chairman flatters himself on his judgment of people.主席自认为他审视人比别人高明。
  • He's a man of excellent judgment.他眼力过人。
138 amplified d305c65f3ed83c07379c830f9ade119d     
放大,扩大( amplify的过去式和过去分词 ); 增强; 详述
参考例句:
  • He amplified on his remarks with drawings and figures. 他用图表详细地解释了他的话。
  • He amplified the whole course of the incident. 他详述了事件的全过程。


欢迎访问英文小说网

©英文小说网 2005-2010

有任何问题,请给我们留言,管理员邮箱:[email protected]  站长QQ :点击发送消息和我们联系56065533